Author: MCUXpresso IDE Team

Version: 2.0.1 10" August 2018

Using the MIMXRT1050-EVK(B) with MCUXpresso IDE v10.2.1

Table of Contents

L OVEIVIBW. it e aaaaeaans 2
D =T Lo I8\ L= T USRS 2
IMXRTL1050 EVK @Nd EVKB.....ccoiuviiiiiiieiieeiiieesiteesieeesite st e st e s sreessaseessateessaneesnseesnneeees s 2
Y L Ol =T g V{1 TR PTRURPPR 3
(D 1] oYU = ST g T u T o |- URPR 3
Also supplied With this DOCUMENT.........occiiiieiiiiie e e e e e e e e e e seaarreeees 3
3 Overview of Board features related to DEbUG.......cooeviiiieiceiiiiieie e, 4
v/ D 1] o TUT - @] o o =Yotu o o TR 5
5 DAPLINK FIrMWare VEISION. ... ciiiieeeee e e e ettt e e e e e e esetttee e e e e e e e eenttaasseeaasaaaaaaesessssessssresnsnnes 6
Updating the DAPLINK firmMWare........oooociiiee ettt e e e e e ere e e e e e 6
oIV [=] 0 (o] =TSP PUPPNt 7
Memory attributes and CACE(S)...ieiucuiieieiiiee et e e e e e e e s e e e e e e e annes 9
A 5 =T 2 T L 1Y L=] U 9
8 NEW ProjeCt CrEatioN. e e e e e e e e e aa e e e eennenen 10
NEW PrOJECE ISSURS. . e e e e e e e e e s e s e e e e s e s e e e e e e e e e e e e e as 11
9 XIP HOW @NA WY .ottt e e e e e sttt e e e e e e e e st ae e e e e e e e eeeeeeeaaaaaaaaens 13
O I o o T =Tor D 1= o TU - SRR 13
11 SDK EXAMIPIES. ettt ettt e e et e e e e e e e e e et a e e e e e eeese s nasrtaaeeaaaaeeeeaaaaaaaaaeaeeeserenes 15
IMPOrtiNG AN EXAMIPIE .. ettt e e e e e st e e e s aeeaaaeeeeeesssnnnsssenneees 15
i 20T = PPN 16
13 Building and Debugging Projects for RAM..........ccovveiiiieiiiiiiiiiieeee e eeseeirreeeeeeeeeeeeeeeeeeenenns 17
USING the SDRAM FEGION......ciiiiiiiiiiieiiee ettt e sttt e e st e e e e stae e e e saaa e e e ssateeaeeeeeeesssnssnnnsnnnnns 17
14 SDK Examples: Converting a RAM project to XIP from Flash.........ccccceevieiiiiniveeeieeeeeeeinnnn, 19
2foYoYaloT=d d o 1=l Y o o] ITor-) o] o R UUPPRRPR 21
ST N o101 o1 =1 oo o) u] - ST TP UUUPPPUPPRPPORt 22
Erasing the HYPerflash....... et e e e e e arrr e e e e e e e e e 22
Obtaining debug control via a debug Connect Script.......cccccoveeeiiiiieeieeeccrreeeee e, 23
Using external DebUZ Probes..........uvvveeiie ittt e e e e e e e e e eeeeeeeeeeees 23
Debug performance and the Data Cache.........cooocuiieiiciiiii e e 24

© 2018 NXP Semiconductors. All right reserved 1

1 Overview

This document is intended to assist users who are new to using the MIMXRT1050-EVK(B)
board. It assumes some familiarity with creating and debugging projects with MCUXpresso
IDE v10.2.1. It is also assumes an SDK for the MIMXRT1050-EVK(B) board has been installed
into MCUXpresso IDE, and the LinkServer/CMSIS-DAP debug connection (DAPLink) will be
used for all debug operations.

Note: it is strongly recommended that the latest available SDK is installed — at the time of
writing this is the EVKB-IMXRT1050 version 2.4.2.

For more information on using MCUXpresso IDE, please see the MCUXpresso IDE User
Guide.

Note: this is a guide only and not intended as a definitive document

2 Read Me First

Some early EVK boards shipped with an image in flash (hyperflash) that when run can
prevent a successful debug connection. Therefore, it is strongly recommended that the flash
is first erased.

To erase this flash, please follow the procedure described in the Troubleshooting section at
the end of this document before any other debug operations are attempted.

Please also refer to the section DAPLink Firmware version to ensure your board is
programmed with the correct debug probe firmware.

IMXRT1050 EVK and EVKB

The original IMXRT1050 EVK board has been replaced by an updated EVK B variant. This new
board contains a later revision of the IMXRT1050 silicon and also various improvements
including observed improved debug stability when using the external 20 way JTAG header.

A new SDK — MIMXRT1050-EVKB, is available to support this later board. It is recommended
that this SDK is used in preference to earlier SDKs whether debugging EVK or EVK(B) boards.

For further information on the .MX-RT1050 and the EVK development boards please see
the following link: https://www.nxp.com/pages/:i.MX-RT1050

For guidance migrating from Rev AO to Rev Al silicon, please see:
https://www.nxp.com/docs/en/nxp/application-notes/AN12146.pdf

© 2018 NXP Semiconductors. All right reserved 2

https://www.nxp.com/docs/en/nxp/application-notes/AN12146.pdf
https://www.nxp.com/pages/:i.MX-RT1050

SDK Changes

SDK_2.x_EVKB-IMXRT1050 version 2.4.x incorporates a number of changes and
improvements from previous SDK versions. Some of the significant changes from the point
of view of general build and debug are listed below:

e Example projects now typically target execution from external flash
o previously most examples linked to execute from RAM
* Onchip SRAM is typically chosen for data storage rather than SDRAM
e Example projects now default to output text via the SDK Debug Console UART
o this text output can be captured using the DAPLink built in VCOM support (not
available when using an external debug probe)
= MCUXpresso IDE now includes a terminal view suitable for capturing this
output within the IDE. Please see the MCUXpresso IDE User Guide section
18.9 ‘Using Terminal View for UART communication with target’
o this default can of course be changed during example import
MPU memory configurations regions settings are improved

Debug Restrictions

Despite the extensive feature set of this MCU/Board, some debug capabilities are not
available. While the MCU does support SWO, due to multiplexing issues this feature is not
available on the EVK(B) boards. Also ETB based instruction trace is not supported by this
MCU.

Also supplied with this Document

* LinkServer Connect Script to initialise SD-RAM

e LinkServer Connect Script to recover debug connections if the default connection
mechanism fails

e QSPI XIP header files for EVK(B) board modified to use QSPI flash

© 2018 NXP Semiconductors. All right reserved

3 Overview of Board features related to Debug

Below is a photo of the MIMXRT1050-EVKB board with key elements numbered and
described:

rrEwd [epegd
=

el

I

1. Power LED - If this LED is not lit, the MCU/board is not powered and cannot be
debugged.

2. J1-Link position (top) for board powered externally (see 5).

3. J1 - Link position (middle) for board powered via the OpenSDA DAPLink debug probe
connection (see 4).

4. J28 - OpenSDA DAPLink (CMSIS-DAP) connection (see 3). This is the recommended
debug connection for initial use.

5. J2 - External power connection. If used, this should be 5v, centre +ve, and J1 set (see
2). This allows power to the board to be controlled via switch SW1 (to the right of
(5)).

6. 20 way JTAG style connection for use with external debug probes such as the LPC-
Link2. External debug probes will typically achieve significantly faster debug
operations than the onboard OpenSDA debug probe. Note: highlighted links will
disable OpenSDA debug if removed. This may improve external debug probe stability.

7. SW7 - DIP switches to select boot options. Initially this should be set for boot from
Hyperflash: so set as 1-off, 2-on, 3-on, 4-off.

8. 127 — OpenSDA Bootloader selection. Set jumper 1-2 for bootloader mode, 2-3 for
OpenSDA debug.

9. SW4 — Reset for use with OpenSDA firmware programming when J27 is set 1-2.

10. Target USB — can also be used to provide power to the target if J1 — Link position set
between (top and middle).

© 2018 NXP Semiconductors. All right reserved 4

4 Debug Connection

For initial use, we recommend using the OpenSDA USB connection (see 4 above) for the first
debug operation(s).

Boards are delivered with DAPLink debug probe firmware (CMSIS-DAP) pre-programmed
into the OpenSDA hardware (please also see DAPLink Firmware version below).

Once an OpenSDA USB connection has been made (on Windows), 'Devices and Printers' will
show the devices as below:

4 Unspecified (3)

DAPLink HID-compliant mbed Serial Port
CMSIS-DAP device (COM124)

This connection can also power the board if the J1 link is set to the mid position (see point 2
in Overview of Board features ... above).

Note: if this link is set correctly, the LED next to J1 will light green. If the LED is not lit, the
MCU will not be powered and debug will fail, resulting in an error similar to that below
(despite the DAPLink debug connection being available):

@ Problem Occurred EI@

~ b ‘Launching MIMXRT1052:c000¢_Project LinkServer Debug’
has encountered a problem.

Error in final launch sequence

OK | [<< Details

Error in final launch sequence
Error: Unable to configure core for probe index 1.
Wire not connected

LinkServer has been terminated and will be restarted.

Please restart your debug session.

If the problem recurs, please power cycle your debug probe
and restart MCUXpresso IDE.

Error: Unable to configure core for probe index 1,

Wire not connected

LinkServer has been terminated and will be restarted.

Please restart your debug session.

If the problem recurs, please power cycle your debug probe
and restart MCUXpresso IDE.

© 2018 NXP Semiconductors. All right reserved 5

5 DAPLink Firmware version

Some of the initial shipments of boards contain a version of DAPLink firmware which has
known issues. To check the version on your board, simply make a USB connection to the
OpenSDA USB connection (as described above) and open a filer window on the EVK(B)-
MIMXRT drive.

/M Computer
&, o5
o EVE-MIMERT (E:)

Open the file DETAILS.TXT on this drive and confirm the ‘Interface Version:’ is 0244 or
greater.

If this is not the case, then the firmware should be updated following the procedure
detailed below.

Updating the DAPLink firmware

From MCUXpresso IDE go to Help -> Additional resources -> OpenSDA Firmware Updates,
this will open a web page ‘OPENSDA: OpenSDA Serial and Debug Adapter’. From this page,
locate the dropdown and select the MIMXRT 1050-EVK board.

Note: at the time of writing only EVK boards are listed here.

Download - OpenSDA Bootloader and Application

To update your board with OpenSDA applications
MIMXRT1050-EVK -

MIMXRT1050-EVK

1. Check which Bootloader and
Application version are already
preprogrammed on your board

OpenSDA version / bootloader

Download the latest DAPLink binary — at the time this document was created this reports as
DAPLink v0244.

To install the firmware, follow the procedure below:

1. Power off the board
2. Locate J27- identified in the board features as (8).
a. SettheJ27 Jumper between pins 1 and 2 (this is the lower position with the
board oriented as the photograph above).
3. Press and hold SW4 — identified in the board features as (9).
4. Connect a USB cable to the OpenSDA connector
5. Release SW4

© 2018 NXP Semiconductors. All right reserved 6

6. Open a filer window and observe a drive labelled MAINTENANCE appears:

(M Computer
&, o5 (@)
o= MAINTEMAMCE (E:)

7. Open this drive and drag the previously downloaded firmware onto the filer window
a. The filer window should close when the firmware update has completed

8. Eject the device
9. Power off the board

10. Restore the J27 Jumper to between pins 2-3 (this is the upper position with the

board oriented as the photograph above).

Now confirm the updated version number as described at the beginning of this section.

Important Note: Two versions of OpenSDA firmware are available, one for onboard
HyperFlash (fitted as standard to the MIMXRT1050-EVK(B) boards) and one for onboard
QSPI-flash (only accessible to reworked boards). These version indicate the flash type that
will be supported for the boards when programmed via drag and drop - mass storage
devices. For users of standard boards be sure to install the HyperFlash version.

6 Memories

Below is a list of the usable memories on this MCU and board. Some, or all of these regions
will be visible within an MCUXpresso IDE project's Memory Configuration Editor (as below):

MName Alas Location Size

Type

Driver

BOARD_FLASH Flash 0x60000000

020000000

(020000

RAM SRAM_ITC RAMZ 0x0 0:20000
RAM SRAM OC RAM3 0x20200000 0x40000
(RAM BOARD_SDRAM RAM4 0x80000000 Dx}‘_OOOOOO)

0x4000000 (MIMXRTIDSO— EV K_S26I(55125,cf9

* External board memories are highlighted in blue. LinkServer Flashdriver for the

hyperflash device highlighted in red.

* Note: By default, projects will be linked to the first flash memory in this list and use
the first RAM region for data, heap and stack. However, the SDK (projects and
examples) may select a subset of these memories and/or change their order to
control linkage (and also override default linkage using the LinktoRAM feature — see

later).

© 2018 NXP Semiconductors. All right reserved

Board_Flash (Hyperflash) at 0x60000000: This 64MB device is board memory external to
the MCU. Programming of this device is provided by a flash driver called MIMXRT1050-
EVK_S26KS512.cfx (for LinkServer CMSIS-DAP debug connections). On reset, (if SW7 is set
for Flash Boot) the BootROM will interrogate this device and attempt to identify a specific
image header, if found, the header data will be used to configure its operation (and also
initialise the SDRAM). If a correct header is not found, this device will be unavailable.

Note: MCUXpresso IDE will automatically generate and locate an appropriate header from
information supplied by the SDK for new projects and as required for example projects.

Code can be run directly from this Flash, this is known as Execute in Place (XIP). This Flash
can be cached by the MCU.

Note: The term XIP is used to differentiate from an alternative boot strategy, where the
BootROM will relocate code (and data) from flash for RAM execution. This mode of
operation is not directly supported within MCUXpresso IDE v10.2.x.

Note: Also see the section on Flash Drivers.

SRAM_OC at 0x20200000. This 256KB (FlexRAM) is on chip SRAM accessed over AXI and is
cacheable by the MPU. Code or data accessed from this memory will use space within the
cache. If this memory is marked as not cacheable, performance will be significantly reduced.

SRAM_ITC at 0x0: This 128KB device (FlexRAM) is on chip SRAM, and tightly coupled to the
MCU and will 'seen' by the CPU before the cache, therefore the contents of this RAM will
not cached. This RAM will provide the best deterministic performance for program
execution.

SRAM_DTC at 0x20000000.: This 128KB (FlexRAM) is on chip SRAM, and tightly coupled to
the MCU and will 'seen' by the CPU before the cache, therefore the contents of this RAM
will not be cached. This RAM will provide the best deterministic performance for data
accesses.

Note: Tightly coupled memories may be described to the MPU with cacheable attributes,
however their contents will not actually be cached. They are intended to be used for code
(and data) requiring the maximum deterministic performance (and minimum power - this is
a complex area and will not be discussed further in this document).

SDRAM at 0x8000000: This 32MB device is board memory external to the MCU. This RAM
block must be initialised before it can be used. An XIP Flash header contains the data for the
BootROM to use to initialise this RAM memory. Alternatively, if a project is targeted to run
from this RAM, a debug Script can be run to initialise this device.

Note: If this initialisation does not occur, then the RAM will not be available and a debug
operation targeting this memory will fail!.

Code can be run directly from this RAM. This RAM can be cached by the MPU.

© 2018 NXP Semiconductors. All right reserved 8

Memory attributes and Cache(s)

Complex memory systems present considerable flexibility to any system designer and much
of this detail is beyond the scope of this document. However, it should be understood that
this MCU contains a cache designed to improve the system performance when accessing
board memories (SDRAM, Flash and OC_RAM). Furthermore, memory regions can be
assigned properties governing how memory access are treated inside that region by the
CPU.

A Memory Protection Unit (MPU) is present on this MCU to control these memory region
properties.

New and example (board) projects will contain a function BOARD_ConfigMPU within the file
board.c . This function performs the MPU configuration for the various memory regions
including cache setup and the exact behaviour of this function is controlled by a number of
defined symbols. It is strongly recommended that (if used) this function is examined and
understood to ensure the memory system is configured as desired.

Note: In SDK versions 2.4 and 2.4.1, the External Flash is configured as ReadWrite:

MPU->RBAR = ARM_MPU_RBAR(2, 0x60000000U);
MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 0, 0, 1, 1,0, ARM_MPU_REGION_SIZE_512MB);

This is not ideal - it is suggested that ARM_MPU_AP_RO is a more appropriate setting for
the flash region. This will be corrected in a future SDK release.

Furthermore, since the MPU controls access to actual memory regions, the selected region
sizes should match the actual memories, thereby enabling the MPU to trap accesses outside
of real memories.

Note: in SDK version 2.4.x the 32MB SDRAM region is configured so the last 2MB will not
be cached:

MPU->RBAR = ARM_MPU_RBAR(8, 0x81E00000U);
MPU->RASR = ARM_MPU_RASR(0, ARM_MPU_AP_FULL, 1, 0, 0, 0, 0, ARM_MPU_REGION_SIZE_2MB);

If a project is created with the SDRAM as the first RAM region then the stack will
automatically be located at the end of this region i.e. within this uncached region of
memory. Since uncached SDRAM will see hugely degraded performance, this situation
should be avoided! Please refer to the MCUXpresso IDE User Guide Section 16.10 Modifying
heap/stack placement for details on controlling stack placement, alternatively the MPU
settings can of course be changed etc.

7 Flash Drivers

The SDKs EVK(B)-IMXRT1050 ships with a hyperflash driver for CMSIS-DAP debug
connections. This driver MIMXRT1050-EVK_S26KS512S.cfx targets a single hyperflash ‘chip’
as fitted as standard to the MIMXRT1050-EVK(B) board. Also supplied are drivers for specific

© 2018 NXP Semiconductors. All right reserved 9

QSPI and EcoXiP devices, known as MIMXRT1050-EVK_IS25WP064A.cfx and MIMXRT1050-
EcoXiP_ATXPO032.cfx respectively.

New in MCUXpresso IDE version 10.2.1 is the source project for these driver located at:
<IDE install Directory>\ide\Examples\Flashdrivers\NXP\iMXRT. These driver project are
supplied as a base for users to develop CMSIS-DAP flash drivers for alternative flash devices.

Also new in MCUXpresso IDE version 10.2.1 are two drivers that self configure from flash
JEDEC SFDP data, and are supplied in binary form only:

MIMXRT1050_SFDP_HYPERFLASH.cfx
MIMXRT1050_SFDP_QSPI.cfx

These drivers are located at: <IDE install Directory>\ide\bin\Flash and should be used in

preference for any new project targeting flash devices that supports the JEDEC SFDP
standard. Please see the MCUXpresso IDE User Guide Section 14.2.4 for more information.

8 New Project Creation

The MCUXpresso IDE New Project wizard defaults to creating projects to execute in place
(XIP) from the board HyperFlash using the SRAM_OC for data.

1 —To create a New Project, Click 'New Project' to launch the New Project Wizard:

&) Quickstart... =1

- MCUXpresso IDE - Quickstart Panel

108) No project selected

~ Create or import a project

o . New project...
Import SDK examplefs)...

Import project(s) from file system...

2 - Ensure the EVK board is selected (otherwise board features including flash memory will
not be available):

Creating project for device: MIMXRT1052xccce using board: EVK-MIMXRT1050
9 prey 9
. Board and/or Device selection page

~ SDK MCUs Available boards

MCUs from installed SDKs Please select an available board for your project.

MNXP MIMXRT1052:00000

» LPCS40mx

> LPCS411x

> LPCS46mx

a MIMXRT1050
MIMXRT105 200000

Supported boards for device: MIMXRT1052:c000

+ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part support

Target e

3 - Click Next (accepting all the default options):

© 2018 NXP Semiconductors. All right reserved 10

. Configure the project

Project name:) xRTI0526000 Project Ly | Project name suffic)

Use default location

C:\Users\peten\D UXpressolDE_101.1_599_rcl 10 Project Browse.

Device Packages Board Project Type Project Options
© MIMXRT1052CVL5A © Default board files @ CProject) Co+ Project SDK Debu
@ MIMXRTL052DVLS A Empty board files € Static Library € C++ Static Library CMsis-

[Import

os 2@ | dnver 2 U %| @5 | vt L2 %| @ 5 || middeware 2% BB
type to filter typeto fiter typetofilter typeto filter
Name Version Name Version | | Name Ver Ver

4 baremetal 100 148 ade 200 48 assert 100
&g ade 200 [7] g} debug_console 100
7] 4 aipstz 200 &g notifier 100
14 aoi 200 1&g shell 1.00
[45} bee 200
148 cache 201 200
BB clock 210
4 cmp 200
@45 common 202
B s 200
4 dedc1 200
48 dep 200
&g dmamux 202
4k edma 211
g eledif 200
[4 enc 200
14 enet 221
B8 ewm 201~

@ <Back | New» |[Fnsh |[Concel |

4 - Then click Finish.

A new project (as below will be created).

[Project Explorer 52 2, Peripherals+ i} Registers .| Symbol Viewer = m]
Es|®w% @ <

4 |25 MIMXRT1052000B_Project
. @& Project Settings
> [Includes
. (2 CMSIS
. [board
> [drivers
> [source
. (2 startup
s [utilities
> 3 xip
> = doc

This is a 'Hello World' project/application that will execute (XIP) from the Hyperflash
memory using the first RAM region (SRAM_OC) for stack and global data. This RAM region is
used because the SRAM_OC is marked by the SDK as the first RAM region for new projects
(this selected RAM can of course be changed).

Note: Previous SDKs selected the SDRAM as the first RAM region. The SDRAM memory if
used will be initialised by the BootROM (using the data from the XIP boot header) before
being used by the application.

New Project issues

SDKs prior to version 2.4 had a number of issues impacting new project creation. These have
been corrected in SDK 2.4.x. The information below (in grey) is supplied for reference.

For a project configured to XIP from hyper flash, a define XIP_EXTERNAL_FLASH should also
be created. This define is used to select some clock setup for the flash and change its MPU
cacheable properties. Currently, the SDK does not specify this define for new projects.

Without this symbol, the projects performance will be reduced.
© 2018 NXP Semiconductors. All right reserved 11

Also, for projects using the SDRAM, a define SDRAM_MPU_INIT should also be set since this
is used to determine the MPU properties for the SDRAM region. Currently, the SDK does not
specify this define for new projects.

Without this symbol, the projects performance will be reduced.

Note: A new project define can be added in a number of ways, for example:
Select the project in the Project Explorer.

From the QuickStart Panel -> Quick Settings -> Defined Symbols

Click +, enter the new symbol
Click OK, OK

PwnNE

By default, the stack will be placed at the end of the first RAM region, therefore in our
example project the stack will grow down from 0x82000000. However, the memory
properties (as set in the MPU) for the last 2MB of the SDRAM are not optimal for stack
operations. This problem can be corrected in a number of ways for example:

1. Edit the project properties and relocate the stack from the End of the memory
region, to instead follow after the project’s data — Post Data (as shown below).

& Tool Settings ‘.3‘ Build steps | 1 Build Artifactl Binary Palselsl @ Error Palscrs‘

4 B MCUC Compiler Manage linker script

(2 Dialect [¥] Link application to RAM

(2 Preprocessor Stack offset 0

3 Includes

& Optimization Library [Rediib (seminost-nf)

(2 Debugging [[]Enable printf float

(8 Warnings [Enable scanf float

(& Miscellaneous))

& Architecture Linker script [evkmimxrt1050_demo_apps_bubble_Debt
4) MCU Assembler Script path [

(2 General

B Architecture & Heoders | Heap and Stack placement [MEUXpresso style

4 1 MCU Linker Region Location Size
€3 General Heap Default Post Data Default
[Libraries
Stack Default End ~ Default
(B Miscellaneous
{8 Shared Library Settings =
(2 Architecture
% Managed Linker Script
(B Multicore

2. Alternatively, edit the MPU description of the SDRAM region within the file board.c
by simply deleting the Region 8 settings (in blue).

#if defined(SDRAM_MPU_INIT)

/* Region 7 setting */

MPU->RBAR ARM_MPU_RBAR(7, 0Ox80000000U);

MPU->RASR = ARM_MPU_RASR(®, ARM_MPU_AP_FULL, ©, 0, 1, 1, 0,
ARM_MPU_REGION_SIZE_32MB);

/* Region 8 setting */

MPU->RBAR = ARM_MPU_RBAR(8, Ox81EQ0000U);

MPU->RASR = ARM_MPU_RASR(O®, ARM_MPU_AP_FULL, 1, 0, 0, 0, O,
ARM_MPU_REGION_SIZE_2MB);
#endif

© 2018 NXP Semiconductors. All right reserved 12

9 XIP How and Why

Traditionally a standard Cortex M application image is programmed into an internal flash
memory (of an MCU), this image is automatically executed once the MCU is reset (a
bootable flash). Although essentially hidden from the user; when an MCU is reset, the first
code to run is (usually) an internal BootROM, which is responsible for internal hardware
setup and passing control to the users application in Flash. From the perspective of the user
however, it appears as though their application is run immediately on reset.

In the case of the RT1050, all flash memory is external to the MCU and therefore unknown
to the BootROM. For the BootROM to boot an image from this flash, some additional
information must be supplied to allow flash initialisation and optimal configuration etc. The
BootROM specification expects this configuration data to be located in an 8KB header at the
start of the users image (application). An XIP image supplies this information in an 8KB
header at the start image itself. Once programmed into flash, this information can be read
by the BootROM using basic subset of flash operations.

When the New Project Wizard is used and a board (evk(b)imxrt1050) is selected, board
components will automatically be pre-selected - including an xip driver. This driver
component will ‘pull in” the required header files into a project folder (xip). The files within
this folder work in conjunction with our Managed Linker Script mechanism to create and
locate an appropriate header for this target flash device.

Note: this image header will only be created if the image is linked to the start of Hyperflash
at 0x60000000 (the New Project default).

10 Project Debug

To debug this new project, check the section at the start of this document and ensure the
board is correctly configured and powered. Then simply select the Project and from the
Quickstart panel, click Debug.

A probe discovery operation will be performed, which should locate the on board DAPLink
debug probe. Select this and click OK.

@ Probes discovered = @

Connect to target: MIMXRT105 2300000

1 probe found. Select the probe to use:

Available attached probes

Marme Serial number/ID Type Manu... IDE Debug Mode
. DAPLink CMSIS-DAP 0225000032254e45 LinkSen ARM Non-5top

© 2018 NXP Semiconductors. All right reserved 13

The project will build and a debug operation will commence. If all goes well, you should see
the following Debug stack and the application halted on main().

1y Debug 3

4 . MIMKXRT1052:cc0B_Project LinkServer Debug [C/C++ (NXP Semicenductors) MCU Application]
4 (72 MIMXRT1052x000B_Project.axf [MIMXRT1052:0006B (cortex-m7)]
a4 o Thread #1 1 (Suspended : Breakpoint]
= main() at MIMXRT1052:000B_Project.c:52 (60002450
bﬂ arm-none-eabi-gdb (8.0.50.20171128)

The debug operations are logged (within the Console - Debug Messages) and will look as
below:

MCUXpresso IDE RedlinkMulti Driver v10.2 (Jun 28 2018 13:51:56 -

crt _emu cm redlink build 554)

Found chip XML file in
C:/Users/peter/Documents/MCUXpressoIDE 10.2.1 792 alpha/workspacel/MIMXRTIO0
52xxxxB_Project/Debug\MIMXRT1052xxxXxB.xml

Reconnected to existing link server

Connecting to probe 1 core 0:0 (using server started externally) gave 'OK'
Probe Firmware: DAPLink CMSIS-DAP (ARM)

Serial Number: 0227000041114e45004b3003b60£003aa6el1000097969900

VID:PID: (0D28:0204

USB Path: \\?\hid#vid 0d28&pid 0204&mi 03#8&1745eda8&0&0000#{4d1e55b2-f16f-
11cf-88cb-001111000030}

Using memory from core 0:0 after searching for a good core

debug interface type Cortex-M7 (DAP DP ID 0BD11477) over SWD TAP 0
processor type Cortex-M7 (CPU ID 00000C27) on DAP AP 0

number of h/w breakpoints 8
number of flash patches 0
number of h/w watchpoints 4

Probe(0): Connected&Reset. DpID: 0BD11477. CpuID: 00000C27. Info: <None>
Debug protocol: SWD. RTCK: Disabled. Vector catch: Disabled.

Content of CoreSight Debug ROM(s):

RBASE EQO0OFD000: CID B105100D PID 000008E88C ROM dev (type 0x1)

ROM 1 EOOFE000: CID B105100D PID 04000BB4C8 ROM dev (type 0x1)

ROM 2 EQOFF000: CID B105100D PID 04000BB4C7 ROM dev (type 0x1)

ROM 3 E000E000: CID B105E00D PID 04000BB00C ChipIP dev SCS (type 0x0)
ROM 3 E0001000: CID BI105E00D PID 04000BB002 ChipIP dev DWT (type 0x0)
ROM 3 E0002000: CID BI105E00D PID 04000BBO0E ChipIP dev (type 0x0)

ROM 3 E0000000: CID BI105E00D PID 04000BB001 ChipIP dev ITM (type 0x0)

ROM 2 E0041000: CID B105900D PID 04001BB975 ARCH 23B:4A13r0 CoreSight dev
type 0x13 Trace Source - core

ROM 2 E0042000: CID B105900D PID 04004BB906 CoreSight dev type 0x14 Debug
Control - Trigger, e.g. ECT

ROM 1 E0040000: CID B105900D PID 04000BB9A9 CoreSight dev type 0x11 Trace
Sink - TPIU

ROM 1 E0043000: CID BI105F00D PID 04001BB101 System dev (type 0x0)
Inspected v.2 External Flash Device on SPI MIMXRT1050-EVK S26KS512S.cfx
Image 'MIMXRT1050-EVK _S26KS512S Jul 17 2018 18:22:12'

Non-standard DAP stride detected - 1024 bytes

NXP: MIMXRT1052xxxxB

Connected: was_reset=true. was_stopped=false

Awaiting telnet connection to port 3333 ...

GDB nonstop mode enabled

Opening flash driver MIMXRTI1050-EVK S26KS512S.cfx

Sending VECTRESET to run flash driver

Writing 25020 bytes to address 0x60000000 in Flash

Erased/Wrote page 0-0 with 25020 bytes in 1387msec

Closing flash driver MIMXRTI1050-EVK S26KS512S.cfx

Flash Write Done

Flash Program Summary: 25020 bytes in 1.39 seconds (17.62 KB/sec)
Starting execution using system reset and halt target

© 2018 NXP Semiconductors. All right reserved 14

Note - system reset leaves VTOR at 0x200000 (not 0x60000000 which a booted
image might assume)
Stopped: Breakpoint #1

11 SDK Examples

The EVKB-IMXRT1050 SDK version 2.4.x contains many examples, the majority of which
target execution (XIP) from hyperflash.

Note: Examples from earlier SDKs typically targeted RAM regions and required modification
to executed from hyperflash.

Importing an example

From the QuickStart panel select the Import SDK example wizard. Ensure the Board is
selected as in the previous wizard and click Next.

Use the Filter to quickly locate the required example. For example: type 'led' as shown
below:

Examples

Mame
4 = demo_apps
led_blinky
Pl = driver_examples
4 [@ £ gpio
igpio_led_output

Select the required projects and Click Finish.

© 2018 NXP Semiconductors. All right reserved 15

The Project Explorer will look as below:

{5 Projec... 22 2, Periph.. (il Regist.. % Faults £ S
=
4 2% evkbimxrtl050_igpio_led_output
. & Project Settings
+ [Includes
. (A2 CMSIS
. 2 board
. 2 drivers
. [source
. [startup
. (2 utilities
. 2 xip
. = doc
a 25 evkbimurtl050_led_blinky
. & Project Settings
+ [l Includes
. 2 CMEIS
. 2 board
. (A2 drivers
. [source
. [startup
. (2 utilities
. (2 xip
. (= doc
- % MIMXRT10525000¢B_Project!

Note: the two projects demonstrate a simple delay based blinky and an interrupt based
version. Both import the required XIP header and executed from Flash.

This project(s) can be debugged directly and you should see the board’s LED flash. If the
board is power cycled, you should see the LED flash program re-run from Flash.

12 Resets

When is a reset not a reset ...

The standard way a project is debugged is (after flash programming) for the MCU to be reset
(by the debug probe) and user debug control made via an automatic breakpoint set on
main(). This scheme though will only work if the application being debugged can be
launched via the BootROM. In our case above, that would be an XIP image in Hyperflash
with a correct header to describe the world and initialise the hyper flash.

However, it can also be useful to develop and debug applications running directly in a RAM
region. For this to work the user must still gain control of the executing code i.e. via a
breakpoint on main() again. However, a real reset cannot be used since this will run the
BootROM and this will control the boot process and not lead us to our RAM location ...

Instead for RAM projects, the debugger will issue a virtual reset using the type SOFT. A SOFT

reset type, simulates some parts of a real reset including setting up the PC, SP, PSR etc.
Since this is not a real reset, the MCU hardware can inherit some setup from its (pre reset)

© 2018 NXP Semiconductors. All right reserved 16

world, for example multiplexing, RAM and/or FLASH configurations. Note: This may be
beneficial, but may also cause problems or confusion if not well understood.

SDK projects that target RAM use this SOFT reset mechanism.

Note: A project running from RAM may not restart successfully since Global data may only
have the intended initial values on the first execution. This is a consequence of the
mechanism and not a fault as such. The expected result can be achieved by using the
QuickStart ‘Terminate, Build and Debug’ feature. All information will of course be lost if the
target board is powercycled.

13 Building and Debugging Projects for RAM

Some example projects (for the iMX RT1050) are configured to link to RAM. This can been
achieved using an MCUXpresso IDE feature that ensures any defined Flash region is ignored
by the Linker resulting in an image being linked to the first defined RAM region.

5 Tool Settings | Build steps I Build Artifact | |1y Binary Parsers | @ Error Parsers|
a 3 MCU C Compiler Manage linker script
(2 Dialect MIMXRT1052:000B_Project_Debug.ld

(2 Preprocessor
(2 Includes

(22 Optimization Library lREd“b (semihost-nf) hd
(# Debugging

Enable printf float

2 Warnings
4 J Enable scanf float

@ Miscellaneous

(# Architecture [] Link application to RAM
By MCU A bl
‘ @ o SSEmBEr Plain load image SRAM QC
(22 General =

(22 Architecture & Headers

- BTA KASNN N T leen

Heap and Stack placement | MCUXpresso Style v|

Note: Some older SDK examples that target RAM execution target the DTCM RAM region at
0x20000000 using the SOFT reset type. They also make use of the above 'Link to RAM'
feature while not actually including the definition of any Flash region - this feature is only
intended for the case where flash is also present and is redundant if no flash is defined and
may lead to user confusion (see the section below for more information).

Using the SDRAM region

The TCM and OC memories should always be present when the part is powered on.
However, the largest RAM on this board is the 32MB SDRAM. As mentioned above, this
RAM is configured by the XIP header code for Flash projects - but for RAM projects to use
this RAM area an alternative initialisation scheme is needed.

Note: If you wish to target the SDRAM region, this must be the first RAM region defined in
the projects memory configuration. If a flash region is also defined, the Link application to
RAM option must also be set.

LinkServer debug operations can run script files at the debug connect stage and also at the
debug reset stage. In this situation, a connect script can be used to enable the SDRAM -

© 2018 NXP Semiconductors. All right reserved 17

therefore making this available for an image to download into the RAM (at 0x80000000).
Such a script 1050RT_SDRAM_Init.scp.

The appropriate script can be dropped directly into the project folder (as below) or copied
into the product itself at <install dir>/ide/bin/Scripts.

4 125 MIMXRT10520000c_Project SDRAM:

> ;:;? Binaries

¢ [Includes

. 2 CMSIS

: 2 board

> 2 drivers

. 2 source

» (2 startup

s A2 utilities

. 2 xip

» [= Debug

» (= doc

|| 1050RT_SDRAM _Init.scp

To use the Script, edit the existing LinkServer Launch configuration (double click) and click
inside the Connect Script Value field to browse for the Script. Select the Script and click OK.

Note: to create a new launch configuration either perform a debug operation via a
LinkServer/CMSISDAP probe or right click on the project and select Launch Configurations ->
Create new... -> MICUXpresso IDE LinkServer ...

£ Main [Common E Scurce [%% Debugger €% GUI Flash Tool

B MCUXpresso IDE LinkServer Debugger
Stop on startup at main Request hardware breakpoint

Debugger Options

Target configuration |Main |

Debug options for NXP MIMXRT1052:00xB (cortex-m7)

Debug Connection | SWD = | | Edit ITAG configuration

Configuration O‘ption Value i
atl- Additional options --no-packed |E|
:Z) Attach only il il
it Cannect Script Sworkspace loc/${ProjNamel}l/1050RT_SORAM Init.scp

atl- Debug Level

=~ s [e

When run, the script will cause the following output in the connections Debug log.

============= SCRIPT: RT1050 SDRAM Init.scp =============
Setup SDRAM

Clock Init Done

SDRAM Init Done

============= END SCRIPT ================================

and of course SDRAM memory will be available for image download.

© 2018 NXP Semiconductors. All right reserved 18

New and example (board) projects will contain a function BOARD_ConfigMPU within the file
board.c . This function performs the MPU configuration for the various memory regions
including cache setup and the exact behaviour of this function is controlled by a number of

defined symbols.

It is strongly recommended that (if used) this function is examined and understood to
ensure the memory system is configured as desired.

14 SDK Examples: Converting a RAM project to XIP from Flash

Project built to run from RAM will of course be lost if power is removed however they can
be converted to run from Flash (XIP) by following the procedure outlined below.

There are three (or four!) steps to convert an image for XIP from Flash.

1 - Change the projects memory configuration to include the HyperFlash region and add a

flash driver.

Right click on the project and select Properties -> C/C++ Build -> MCU settings -> Edit

Click Add Flash

MCUXpresso IDE

Memory configuration editor

Memory configuration

Edit cenfiguration for MIMXRT1052:000x

Default flash driver | |

Browse...

Type Mame
RAM SRAM_DTC
RAM SRAMITC
RAM SDRAM
RAM SRAM_OC

Alias
RAM
RAM2
RAM3
RAN4

Location
0x20000000
0
0x80000000
0%20200000

Size

020000
020000

02000000

040000

Driver

Add Flash | Jladd RAM | [spiit] cin| [Delete

|Import... ‘ | Merge... | | Export... | | Generate... |

=1 | B

[OK] | Cancel

The hyper flash on this board is located at 0x60000000 and is 64MB in size.

Enter the new Location address at 0x60000000, and the Size as 0x400000 (or 64M), then
click in the Driver field to select the flash driver 'MIMXRT1050-EVK_S26KS512S.cfx. Be sure
to click outside of the edited field (i.e. inside a blank field) to ensure the edit completes.

Your memory configuration will look like below:

Note: the first RAM (SRAM Data TCM in this case) will automatically be used for the project's
stack and global memory usage. The order of the memory regions can be changed using the
right hand (up/down) buttons if required.

© 2018 NXP Semiconductors. All right reserved

19

[¥] MCUxpresso IDE
Memory configuration editor
Edit configuration for MIMAXRT1052:0000¢
Memory configuration

Default flash driver

Browse...

Type Name Alias Location Size Driver

Flash Flash_00 Flash 060000000 0x400000 MIMXRT105..,
RAM SRAM_DTC RAM 020000000 0x20000

RAM SRAM_ITC RAMZ 00 020000

RAM SDRAM RAM3 030000000 02000000

RAM SRAM_OC RAM4 020200000 040000

“Iﬁ@

[Import...| [Merge...| [Export...| |Generate..

Lox I

Cancel]

Click OK.

2 - Add the XIP files.

To add XIP files to a project, select the Project and then click the Manage SDK Components

as shown below:

[Projec... 52 |2, Periph... %I Regist.. &0 Symb..

50

» 25 evkmimxrtl050_driver_examples_gpio_igpio_ted=0u|

» =% MIMXRT105250000¢_Project

4 I

) Quic...

~ Start here
. New project...
. Import SDK example(s)...

& Import project(s) from file system...

[P 2

n Manage SDK components for project evkmimxrt1050_driver_examples_gpio_igpio_led_output

Available SDK components

Copy sources
[¥]Import other files

0s 2| m g || diver £ F % @ || utes iR EE
type to filter type to filter type to filter
MName Version Name Version o Name Wersion
[7] 4 baremeta 100 4% gtmr 200 I asset 100
[dgk wdog 200 i
] & sai 211 [[] 4 notifier 1.00
[C] dg% sai_edrr 211 [C] dg shell 100
[dgk seme 200
[C] dg snvs_hp 200
[dgk snvs_lp 200
[4% spdif 200
[dgk spdif_ec 200
[&g sre 200
i tmg 201
[g tsc 200
[k sdhe 210
[4 wdog 200
[4% xbara 202 =

e

®

3 - Add the symbol definition(s) as discussed above.

o 0]

Lo o s

e

middleware 7 7 3% | @ [
type tofilter

Name Versien
. [[] 2 File Syster
. 7] 2 Image
> [2 Memories
. [[] 2 Network
. [2 usB
[7] i dma_mar 200

Right click on the project and select Properties -> C/C++ Build -> Settings -> Preprocessor ->
click + and add the new define — XIP_EXTERNAL_FLASH=1

4 — Restore Linkage to Flash (if required).

For projects built to execute from Flash (the historically normal case) - there is a quick
setting that can be used to force a project to instead link against the first RAM bank. The

© 2018 NXP Semiconductors. All right reserved

20

SDK is causing this feature to be set even when no Flash is configured. Hence when the
project is rebuilt, it will link still to RAM even though we have just defined a Flash region.

To restore linkage to Flash:

Right click on the project and select Properties -> C/C++ Build -> Settings -> Managed Linker
Scripts -> Uncheck - Link application to RAM

& Tool Settings | Build steps | Build Artifact I |ﬂ Binary Parsers | & Error Parsers

a4 15 MCU C Compiler [¥] Manage linker script
(22 Dislect MIMXRT1052.000@_Project_Debug.d
@ Preprocessor
@ Includes
(% Optimization Library |Redlib (semihost-nf) =
@ Debugging

Enable printf float
@ Warnings P

@ Miscellanecus Enable scanf float

@ Architecture ‘Link application to RAM
a 3 MCU Assembler M

(# General

(2 Architecture 8 Headers

L OETA RASTLE oL

[TPlain Toad image SRAM_OC

Heap and Stack placement |MCUXpresso Style -
Now, debug this application as before:

You should see the PC stopped at a Hyperflash address i.e. in the 0x60000000 range as
below:

%5 Debug i
4 . evkmirmxrtl050_driver_examples_gpio_igpio_led_output LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
4 G evkrirxrtl050_driver_examples_gpio_igpio_led_output.axf [MIMXRT1052:0000 (cortex-m7)]

4 o Thread #1 1 (Stopped) (Suspended ; Beowiemein
= main() at gpio_led_output.c:7{ 0:60002a22

w| arm-none-eabi-gdb (7.12.1.20170417)

Note: as discussed above, projects targeting RAM will use a SOFT reset type. This reset type
is assumed by the IDE to be the default for RAM projects however, some examples may
explicitly set this reset type within the launch configuration. Therefore, if a RAM based
project already has a launch configuration this SOFT reset type may remain after the
conversion to XIP. The simplest way to fix this problem is to delete any existing launch
configuration from the project and allow a new one to be automatically re-created.
Alternatively, it can be edited and the SOFT option removed leaving no entry for reset type.

Booting the Application

Switch off power to the board (or unplug the OpenSDA debug connection). Remember to
ensure the DIP switch (SW7) is set boot from Hyperflash, then reapply power. The board
should boot the image.

Note: examples that use semihosting for printf, can still run without debug support if a
hardfault handler ‘semihost_hardfault.c’ is included within the image. This handler is usually

included by default.

© 2018 NXP Semiconductors. All right reserved 21

15 Troubleshooting

Erasing the Hyperflash

If for any reason a 'bad' application is programmed into flash and the BootROM boots this
image, the resulting executed code may affect the part in such a way that prevents new

debug operations succeeding. Should this occur, the following operation should recover the

situation.

1. Power off the board.

2. Change the DIP switch (SW7) to prevent booting from hyperFlash e.g. set 1- on.
3. As a precaution, kill any active debug components
=>» to do this, click the icon:

e

4. Use the GUI Flash Tool to Erase the data in HyperFlash.

=» to do this, select a project that is configured for XIP from flash (e.g. a New
project as described above) and click the GUI Flash Tool icon (the chip):

L BE

5. Select the probe as for a normal debug operation, then ensure the 'Erase flash
memory' tab is selected. Click the 'Mass erase' radio button and then click OK.

GUIFlash Tool =3 BR[|
.
GUIFlash Tool for:
N i MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
Erase flash
Target: MIMXRT1052xc008
Probe Options
Probe specific optiens
Cennect script * | Workspace... || File System...
a Norkspace... || File System
Reset Handling IDefau\t 'J
Flach Reset Handling [Defautt -
B Reset the target on connection
Target Operations
Select the target flash operation to perform
Program | Erase
Algorithm
Select the algarithm for flash erasing
@ Mass erase
_) Erase by sector
) Check blank
General Options
Flash programming tool options
Additional options
|| Repeat on completion [Preview command Clear console

© 2018 NXP Semiconductors. All right reserved

22

6. This will cause a mass erase of the hyper flash, leading to the following dialogue.

r@ Erase flash @

. , Operation successfully completed!
' Seeflash programming tool consecle for more details.

Remember to restore the DIP switch (SW7) to set boot from Hyperflash and also power
cycle the board. Next time the board boots, the BootROM will identify the Flash as erased
and avoid running any flash image.

Note: The time taken to erase this flash is proportional to the current contents and may take
some minutes to complete.

Obtaining debug control via a debug Connect Script

It has been observed that debug control may be impacted by certain applications running in
Flash. This problem can manifest in being unable to make a debug connection — if this
occurs, even a mass erase may be impossible.

As discussed earlier in this document, LinkServer debug operations can run script files at the
debug connect stage, a script to work around connection problems called
RT1050 Debug_Connect.scp is supplied with this document.

This script can be dropped directly into the project folder or copied into the product itself at
<install dir>/ide/bin/Scripts and then referenced in a debug launch configuration.

Using external Debug Probes

The onboard DAPLink OpenSDA debug interface does not deliver particularly high debug
performance. The standard 20way ‘JTAG’ header may be used with external debug probes
such as the LPC-Link2 for faster debug operation.

If the LPC-Link2 is used it is recommended that the board be both powered externally and
the Link JP2 should be fitted to the LPC-Link2 probe.

Please note: It has been observed that debug via these external debug probes may be less
reliable with certain images. Such debug problems will manifest as wire ack faults. This
problem may be improved if the OpenSDA debug interface is disabled, please see Overview
of Board features ... point (6) for more information.

If these are seen it is recommended that the OpenSDA debug connection is used.

© 2018 NXP Semiconductors. All right reserved 23

Debug performance and the Data Cache

When debugging images that make use of SDRAM or OC_RAM for storage of variable data
(globals, stack, heap etc.) then the following option should be set within the LinkServer
debug launch configuration as shown below:

Debugger Options
f.s::_;rT ((Jnfl[;ur.ltlurl Main

Debug options for NXP MIMXRT1052xxxxB (cortex-m7)

Debug Connection | SWD - | | Edit JTAG configuration
Configuration Opzaouw Value I
= e F . Y |
{at]: Additional options --no-packe(;dchehb I[bmf_cache.sg HE|
- e i e e e : i TS |
i Attach only False
=K T amnart Crrind

This module ensures that debug cache coherence is maintained, and correct debug
operations may fail if this module is not specified. However there will be a debug
performance penalty when this module is used.

Note: this module is not required if the SDRAM (or OC_RAM) only contains constant or
uncached data.

© 2018 NXP Semiconductors. All right reserved

24

	1 Overview
	2 Read Me First
	IMXRT1050 EVK and EVKB
	SDK Changes
	Debug Restrictions
	Also supplied with this Document

	3 Overview of Board features related to Debug
	4 Debug Connection
	5 DAPLink Firmware version
	Updating the DAPLink firmware

	6 Memories
	Memory attributes and Cache(s)

	7 Flash Drivers
	8 New Project Creation
	New Project issues

	9 XIP How and Why
	10 Project Debug
	11 SDK Examples
	Importing an example

	12 Resets
	13 Building and Debugging Projects for RAM
	Using the SDRAM region

	14 SDK Examples: Converting a RAM project to XIP from Flash
	Booting the Application

	15 Troubleshooting
	Erasing the Hyperflash
	Obtaining debug control via a debug Connect Script
	Using external Debug Probes
	Debug performance and the Data Cache

