I²C Bus Selection Guide

Texas Instruments (TI) has supported the highly efficient I²C BUS[®] interface for many years. This overview provides an updated look at I²C applications and how TI's I/O expanders, multiplexers, buffers and repeaters can help system designers achieve effective subsystem communications using proven I²C devices.

History

During the 1980s, Philips (Koninklijke Philips Electronics N.V.) developed the two-wire inter-integrated circuit ($\rm I^2C$) bus to provide an easy way to connect multiple peripheral circuits to a central processing unit (CPU/MCU) in TV applications.

As circuits became more complex with many peripheral connections, a method was needed to simplify designs and reduce costs. By limiting the number of printed circuit board (PCB) traces and lowering general-purpose input and output (GPIO) usage on the microprocessor, the I²C bus met this requirement.

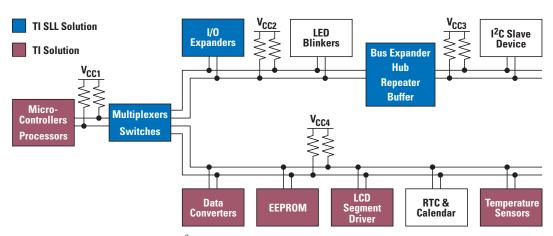
Operation

The I²C bus is used in a wide range of applications because it is simple and quick to use. It consists of a two-wire communication bus that supports bidirectional data transfer between a master and several slaves. The master or processor controls the bus—in particular, the serial clock (SCL) line. Data is transferred between the master and slave through a serial data (SDA) line. This data can be transferred in three speeds or modes: standard (0 to 100 kbps), fast (0 to 400 kbps) and high-speed (0 to 3.4 Mbps). The most common speeds are the standard and fast modes. See block diagram below for a generic system.

There can be more than one master on a system; the software protocol uses arbitration and synchronization to manage data collisions and loss.

Since successive specification enhancements are backwardcompatible, mixed-speed communication is possible with the bus speed being controlled by the bus master chip.

I²C Features

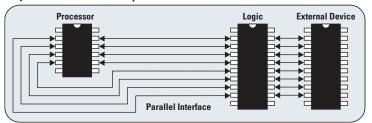

- Requires one master (processor) and one or more slave devices
- Each device on the bus generally has a unique address
- Bus capacitive load: 400 pF max
- Rise time: 1000 ns (standard mode) and 300 ns (fast mode)

I²C Applications

The I²C bus is useful for many of today's microcontroller- and microprocessor-based systems or other systems linking many I/O devices. These systems may include applications in the following fields:

- Automotive
- PC/server
- Consumer
- Radio/TV
- Industrial
- Telephony
- Telecom/networking

Many of the I^2C bus products are designed to operate in the SMBusTM environment. The SMBus is similar to the I^2C bus but has lower current and operates at a lower speed.

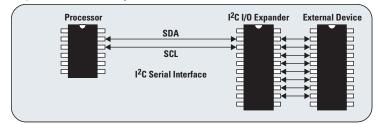

Expanders

The I²C I/O expander as shown in this diagram allows system layout to be greatly simplified. The two-wire bus reduces PCB complexity through trace reduction and routing simplification.

Advantages:

- Easy board routing
- Board-space savings
- Processor-pin savings
- Low cost
- Industry standard

System Without I²C I/O Expanders

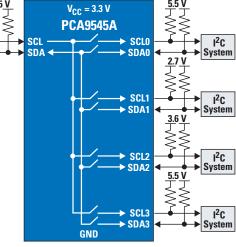


System With I²C I/O Expanders

 I^2C

Master

SDA

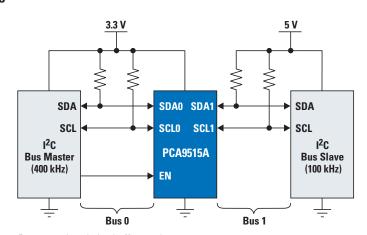

I/O expanders

Multiplexers and Switches

The I²C I/O multiplexer/switch shown in this diagram allows further expansion of I²C systems while maintaining the simple two-wire bus. It can also perform voltage translation and segment isolation.

Advantages:

- Resolves I²C address conflicts
- Can isolate a section on the I²C bus
- Pin savings on the I²C master, as each switch is activated or isolated through the I²C software
- Permits I²C bus expansion
- Supports voltage-level translation between 2.5-, 3.3- and 5-V buses, which is essential in mixed-voltage I²C systems


Multiplexers and switches

Bus Expanders, Hubs, Buffers and Repeaters

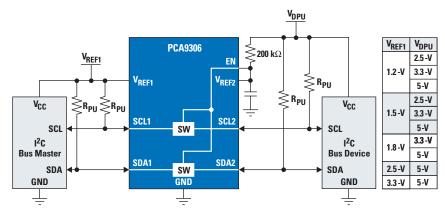
I²C bus expanders, hubs, buffers and repeaters permit bus expansion, sectional bus isolation, address conflict resolution and voltage-level translation as shown in this diagram.

Advantages:

- Can isolate a section on the I²C bus through enable (EN) pin
- Permits I²C bus expansion
- Resolves I²C address conflicts
- Supports voltage-level translation between 2.5-, 3.3- and 5-V buses, which is essential in mixed-voltage I²C systems

Bus expanders, hubs, buffers and repeaters

Translators


The PCA9306 bidirectional voltagelevel translator enables voltage translation where interconnection between voltage levels is required as shown in this diagram.

Features:

- Less than 1.5-ns maximum propagation delay
- Low 3.5- Ω on-state connection between I/O ports provides less signal distortion
- Open-drain I²C I/O ports (SCL1, SDA1, SCL2, SDA2)
- 5-V-tolerant I²C I/O port to support mixed-mode signal operation
- High-impedance SCL1, SDA1, SCL2 and SDA2 pins for EN = low

Advantages:

 \bullet Can interface between MSP430 microcontrollers and DSPs operating at 1.8 V and I^2C slave devices operating at V_{CC} of 2.5 V and higher

PCA9306 bidirectional voltage-level translator

- Provides bidirectional voltage translation without a direction pin
- Accommodates standard- and fast-mode I²C devices and multiple masters

Applications:

- Mixed-mode voltage applications
- Bus isolation

Portfolio

TI is constantly developing new I²C products. The Packages and Availability table includes TI's current portfolio of I²C bus products and those planned for release during 1H06.

I²C Selection Guide

	Max		V _{CC}	Bit or	Additional Features						I/O Type	
	Frequency	l ² C	Range	Channel	Low			Configuration	5-V-Tolerant	Totem	Open-	
Device	(kHz)	Address	(V)	Width	Power	Interrupt	Reset	Registers	I/O	Pole	Drain	
I/O Expanders												
PCA9536	400	1000 001	2.3 to 5.5	4-bit				V	V	V		
PCF8574	100	0100 xxx	2.5 to 6.0	8-bit		V				V		
PCF8574A	100	0111 xxx	2.5 to 6.0	8-bit		V				V		
PCA9557	400	0011 xxx	2.3 to 5.5	8-bit	V		~	V	V	V	V	
PCF8575	400	0100 xxx	2.5 to 5.5	16-bit		V				V		
PCF8575C	400	0100 xxx	4.5 to 5.5	16-bit		V					V	
PCA9535	400	0100 xxx	2.3 to 5.5	16-bit	~	V		V	V	V		
PCA9539	400	1110 1xx	2.3 to 5.5	16-bit	V	V	~	V	V	V		
PCA9555	400	0100 xxx	2.3 to 5.5	16-bit		V		V	V	V		
Multiplexers												
PCA8550	400	1001 110	3.0 to 3.6	5-bit						V		
PCA9544A	400	1110 xxx	2.3 to 5.5	4-channel		V			V		V	
PCA9545A	400	1110 0xx	2.3 to 5.5	4-channel		V	~		V		V	
PCA9546A	400	1110 xxx	2.3 to 5.5	4-channel			~		V		V	
Buffer/Repeater												
PCA9515A	400	None	2.3 to 5.5	2-channel					V		V	
Translator												
PCA9306	400	None	0 to 5.0	2-channel					V		V	

Packages and Availability

Device	BGA	PDIP	QFN	MSOP	SM8	SOIC	SSOP	QSOP	TSSOP	TVSOP	US8	WCSP
PCA6107						1						
PCA8550						V	V		~			
PCA9306					V						V	
PCA9515A				V	V	V			V			
PCA9535			V			V	V	V	V	V		
PCA9536				~ ²		1 2					1 ²	~ ²
PCA9539			V			V	V	V	V	V		
PCA9544A	V		V			V			V	V		
PCA9545A	V		V			V			V	V		
PCA9546A			V			V			V	V		
PCA9555			V			V	V	V	V	V		
PCA9557			V			V	V		V			
PCF8574/A		V	V			V			V	V		
PCF8575/C			V			V	V	V	V	V		

Competitive Cross-Reference

0.000								
TI Device	Philips	Maxim						
PCA6107								
PCA8550	PCA8550							
PCA9306								
PCA9515A	PCA9515/A							
PCA9535	PCA9535	MAX7312						
PCA9536	PCA9536							
PCA9539	PCA9539							
PCA9544A	PCA9544/A							
PCA9545A	PCA9545/A							
PCA9546A	PCA9546/A							
PCA9555	PCA9555	MAX7311						
PCA9557	PCA9557	MAX7310						
PCF8574/A	PCF8574/A							
PCF8575/C	PCF8575/C							

For More Information

For additional information, including application reports, application clips, articles and links to the product folders, please visit: www.ti.com/i2c or www.ti.com/standardlinear

For more information about TI "Must Have" linear solutions, visit:

www.ti.com/musthave

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Product Information Centers

Americas

Phone +1(972) 644-5580 +1(972) 927-6377

Internet/Email support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

Belgium (English) +32 (0) 27 45 54 32 Finland (English) +358 (0) 9 25173948 +33 (0) 1 30 70 11 64 France Germany +49 (0) 8161 80 33 11 Israel (English) 180 949 0107 800 79 11 37 Netherlands (English) +31 (0) 546 87 95 45 Russia +7 (0) 95 363 4824 +34 902 35 40 28 Spain Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99 Fax +(49) (0) 8161 80 2045 Internet support.ti.com/sc/pic/euro.htm Japan

International +81-3-3344-5317 Fax 0120-81-0036 Domestic Internet/Email International support.ti.com/sc/pic/japan.htm Domestic www.tij.co.jp/pic

+886-2-23786800

Asia

Phone International

Domestic Toll-Free Number Australia 1-800-999-084 China 800-820-8682 800-96-5941 Hong Kong India +91-80-51381665 (Toll) 001-803-8861-1006 Indonesia Korea 080-551-2804 Malavsia 1-800-80-3973 New Zealand 0800-446-934 Philippines 1-800-765-7404 800-886-1028 Singapore Taiwan 0800-006800 Thailand 001-800-886-0010

+886-2-2378-6808 Fax tiasia@ti.com Email ti-china@ti.com

Internet support.ti.com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product design's, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof

Technology for Innovators, the black/red banner and curving stream design are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

B120905

¹Preview ²Planned