	

PIC24FJ64GB002
http://www.yts.rdy.jp/pic/GB002/protocol.html

目次
· PIC回路とRS232C回路
· HCIレイヤー（PIC-PC間接続：始めたばかりの方にはお勧めしません。）
· Windows XP
· Windows 7
· HCI layer (PIC-pic-to-PIC connection)
· HCI Layer (PIC-pic Connection: Bluetooth Ver. 4.0 LE)
· Bluetooth-HID profile
· Bluetooth-HID Application
· PowerPoint
· Wireless PS/2 keyboard
· wii remote control
· Rs232C Radioization
· GPIB radio (PIC32MX795F512H, but see April 2012 issue of Transistor Technology)
· Event-driven firmware (Microsoft only)
· Energy saving with Deep sleep function
· Connection without in-code input:P SSP (Secure Simple Pairing)
· Android Mobile HID (galaxy SII wimax)
· Bluetooth Ver. 4.0 LE mode
· RFCOMM Layer
· Rfcomm Applications
· Rs232C Radioization
· Android Mobile SPP (galaxy SII wimax)
· Data sequencing software for SDP
· FCS Calculation Software
explanation
· HCI Protocol
· Connection via HCI protocol
· Securing channels in L2CAP (protocol)
· Protocol (SDP)
· RFCOMM Protocol
· SSP(Just Works)
· Protocols and profiles
· Bluetooth Ver. 4.0 LE mode (see The May 2013 interface issue)

	

HCI layer (PIC-pic-to-PIC connection)
Prepare two PIC circuits and wirelessly connect them. One is called master, and the other is called slave. master requests a connection from slave, and slave issues connection permission to master. The firmware for master is HCImaster.zip and the firmware for slave is HCIslave .zip firmware.
First, connect the RS232C circuit (for debug monitoring) to master's PIC circuitry so that you can debug monitors on your personal computer (PC) (using monitor application programs such as Hypertermter and Tela Term). All you have to do is turn on slave's PIC circuit and then turn on master's PIC circuit. The monitor log should be as follows:
USB Custom Demo App Initialized *****

Generic demo device attached - event, deviceAddress=1

HCI_CMD_RESET: 0E 04 01 03 0C 00
HCI_CMD_READ_BD_ADDR: 0E 0A 01 09 10 00 22 0B 04 DC 1B 00
HCI_CMD_LOCAL_NAME: 0E 04 01 13 0C 00
HCI_CMD_CLASS_DEVICE: 0E 04 01 24 0C 00
HCI_CMD_SCAN_ENABLE: 0E 04 01 1A 0C 00
HCI_CMD_INQUIRY_RESULT: 02 0F 01 40 E4 03 DC 1B 00 01 02 00 04 05 00 D6 15
HCI_CMD_INQUIRY_STATUS: 01 01 00
HCI_CMD_CONNECTION_ACCEPTED: 03 0B 00 2A 00 40 E4 03 DC 1B 00 01 00
2A 20 09 00 05 00 40 00 00 02 03 04 05
HCI_ACL_READ_DATA
2A 20 09 00 05 00 40 00 10 02 03 04 05
HCI: 20 07 40 E4 03 DC 1B 00 01
HCI: 13 05 01 2A 00 01 00
HCI: 1B 03 2A 00 05
HCI: FF 03 2A 00 05
2A 20 09 00 05 00 40 00 01 02 03 04 05
HCI_ACL_READ_DATA
2A 20 09 00 05 00 40 00 11 02 03 04 05
HCI: 13 05 01 2A 00 01 00
HCI: FF 05 01 2A 00 01 00
2A 20 09 00 05 00 40 00 02 02 03 04 05
HCI_ACL_READ_DATA
2A 20 09 00 05 00 40 00 12 02 03 04 05
HCI: 13 05 01 2A 00 01 00
HCI: FF 05 01 2A 00 01 00
HCI_CMD_CONNECTION_ACCEPTED: Below, I'm sending 5 0x00 0x02 0x03 0x04 0x05 of the data from master to slave (line 17 from the bottom). Only the first 0x10, i.e. 0x10 0x02 0x03 0x04 0x05 5 bytes of the hex are sent back from slave to master (line 15 from the bottom). Again, the first byte of data sent from master to slave is increased by 1 every time it is sent (line 10 from the bottom or line 5 from the bottom). On the firmware, the main .c
HCI_ACL ******************
If you look after the comment sentence, you will immediately know what you are doing.
If you are asked what is possible, for example, if you install a PIC circuit for slave in a simple robot, etc., and use the PIC circuit for master as a remote control, you will be able to control the robot etc. wirelessly.
Note: This firmware can only be used under conditions where there is only one bluetooth device (only pic circuits created) that are in a state that can be found from master (scan enable). If you have another bluetooth device and it is in a discoverable state from master, you need to rewrite case HCI_CMD_INQUIRY_RESULT: in main.c to select only the appropriate slave. If so, see section7.7.2, Inquiry Result Event (page 564) of bluetooth manial Core v2.0 + EDR.pdf.
By the hidblueM_firm4.zip, the only difference .zip HCImaster .zip HCIslave and HCIslave is .c main.

HCImaster Supplement
1. How to handle when there are multiple Bluetooth devices around:
In .c case in the main HCI_CMD_INQUIRY: is set, for example:
Set query time at buf1[6]=0x05;/waiting time (5 * 1.28
sec)Buf1[7]=0x03;Find up to three Bluetooth devices around you.
There is only one inquiry. In other words, you should not repeat the query over and over again.
If there are more than 3 Bluetooth devices around, the query ends when 3 are found. In addition, for example, if there are only two Bluetooth devices around, the inquiry ends when the inquiry time expires. In any case, when 0x01, an Inquiry complete event will be returned. Capture all 0x02 events (which cause this event several times) until the query stops, so you can get duplicate information about the Bluetooth devices around you. in .c main's case,
case HCI_CMD_INQUIRY_STATUS:
//YTS********************************
if(buf1[0]!=0x01) {buf1[0]=0xff; HciState=HCI_CMD_INQUIRY_RESULT; return;}
#ifdef DEBUG_MODE
UART2PrintString("Bluetooth Detected \r\n");

//YTS********************************
//copy slave BD address
remote_bd_addr[0]=buf1[3];
remote_bd_addr[1]=buf1[4];

case BT_STATE_READ_CLASS_WAITING:
if (! USBHostGenericRx1IsBusy(deviceAddress)){
//YTS********************************
if(buf1[0]==0x01){ DemoState =BT_STATE_PROCESS; break;}
//YTS********************************
if(buf1[0]!=end_num){ DemoState =BT_STATE_READ_EP1; break;}
#ifdef DEBUG_MODE more

than that, //YTS*
Check the RS232C monitor.
If there are only two Bluetooth devices around, this is an example of a log on an RS232C monitor.
HCI_CMD_RESET: 0E 04 01 03 0C 00
HCI_CMD_READ_BD_ADDR: 0E 0A 01 09 10 00 AE DF 03 DC 1B 00
HCI_CMD_LOCAL_NAME: 0E 04 01 13 0C 00
HCI_CMD_CLASS_DEVICE: 0E 04 01 24 0C 00
HCI_CMD_SCAN_ENABLE: 0E 04 01 1A 0C 00
HCI_CMD_INQUIRY_RESULT: 02 0F 01 0A 6F FE 33 24 00 01 02 00 0C 01 02 FE 48
HCI_CMD_INQUIRY_RESULT: 02 0F 01 D8 A9 03 DC 1B 00 01 02 00 04 05 00 EB 5F
Bluetooth Detected
In this way, the Inquiry result event returns twice. However, the program stops at while(1);, so please do the following yourself. In other words, the Bluetooth address and clock offset of the Bluetooth device you want to connect are stored in an array (remote_bd_addr and clock_offset), and copied to buf1 as if HCI_CMD_CREAT_CONNECTION: were connected. When connected, the slave handle returns. Let's keep this in the sequence. Repeat this connection process for the number of Bluetooth devices you want to connect. On different Bluetooth devices, the returned handles are different from each other, so the master uses the handle to exchange data packets with each Bluetooth device. In addition, remote_bd_addr and clock_offset and handle are required for the number of Bluetooth devices you want to connect.
2. For unsigned char delay_time=30;:
The old USB Host - MCHPUSB - Generic Driver Demo bug has been fixed, so you don't need different variables with the new USB Host - MCHPUSB - generic driver Demo delay_time with the new USB.

return

	

HCI Layer (PIC-pic Connection: Bluetooth Ver. 4.0 LE)
Interface Prepare two PIC circuits (exactly the same) listed in the May 2013 issue (for PIC-PIC connections, the dongle used can be a PLANEX BT-Micro4). In between, wirelessly connect in Bluetooth Ver. 4.0 LE mode. One is called master, and the other is called slave. master requests a connection from slave, and slave issues connection permission to master. The firmware for master is HCImasterLE.zip and the firmware for slave is HCIslaveLE.zip.
First, connect the RS232C circuit (for debug monitoring) to master's PIC circuitry so that debug logs can be monitored on a personal computer (PC) (using monitoring application programs such as Hypertermter and Tela Term). Then turn on slave PIC circuit and master PIC circuit. Once connected, the LED lights up. The monitor log looks like loghostLE.txt example. In this log, it is noteworthy that
2A 00 09 00 05 00 40 00 01 02 03 04 05
(meaning sending data "5 bytes of 0x01 0x02 0x03 0x04 0x05" from master PIC circuit to slave PIC circuit),
HCI_ACL_READ_DATA:
2A 20 09 00 05 00 40 00 02 03 04 05 06
(meaning that the master PIC circuit is receiving "5 bytes of 0x02 0x03 0x04 0x05 0x06" data sent from slave PIC circuit to master PIC circuit).
In other words, if you send data from master's PIC circuit to slave's PIC circuit, you can see that slave's PIC circuit adds 1 to each of the 5 bytes of data and sends it back to master's PIC circuit. By the way, in the firmware created this time, when the data is sent and received, it enters an infinite loop and does nothing more (it enters the infinite loop at case PROG_END: of main .c of both firmwares). I'm d like to include a comment in the firmware, so please refer to it and rewrite it to suit your preferences. Only the main version of both firmwares .c rewriting. Also, when debugging is finished, make a comment
.c the
#define DEBUG_MODE in the mains of both firmwares.
Note: This firmware can only be used under conditions where there is only one BluetoothLE device (only slave PIC circuits created) that are discoverable from master (advertised). If there is another bluetoothLE device and it is in a discoverable state from master, re-HCI_CMD_SCAN_ENABLE_END:sentence and case HCI_CMD_SCAN_ENABLE_END1:sentence in main.c in the HCImasterLE folder (until you find something to connect to) Select one bluetoothLE device found at that time, and in case HCI_CMD_WRITE_LIST: sentence, whitelist (list the bluetoothLE devices that allow connection. The opposite of blacklisting.) must write its bluetooth address (6 bytes) and address type (usually zero bytes).
Now, for PIC-PIC-to-PIC connections, why not use any more protocol profiles (L2CAP, ATT, GATT, HOGP, etc.) up to the HCI protocol? For example, let's say you have a personal computer (pc: master) and there are a lot of BluetoothLE devices around it. The PC must be able to connect to those BluetoothLE devices. However, each BluetoothLE device has different profiles (various profiles for music, USB wireless, RS232C wireless), so it is necessary to respond to these individually. Therefore, the PC must first find out what profile each BluetoothLE device has. Now that you know the profile, you need to find out what form the data structure used there is. For example, if a BluetoothLE device has a profile for usb-HID wirelessization, L2CAP, ATT, GATT, and HOGP have roughly established "promises" to perform the above investigations. On the other hand, if you use PIC as master, of course, if you want to support various profiles, you will need L2CAP, ATT, GATT. However, in many cases, slave's PIC circuit, which is the partner to which it is connected, requires only one profile anyway. In addition, with a single profile, you don't have to worry about the bluetoothSIG profile. In other words, you just have to create your own profile. This unique profile is created on the HCI protocol, but there is no need to make it so large. For example, if you turn on or off the LEDs attached to slave's PIC circuit, but "stipulate" (with the promise of communication) to send 'S' and 'R' from the pic circuit of master to the PIC circuit of slave respectively, it will become a profile (protocol at the same time). LED_ON_OFF can be called a profile (protocol), but I don't think it's necessary to call it a profile. For this reason, I simply say, "For PIC-PIC connections, you only need to go up to the HCI protocol."

return

	

HCIプロトコル
Because bluetooth USB dongles (commonly called controllers) are controlled by PIC or PC (commonly called hosts), the HCI (Host Controller Interface) protocol is the convention (protocol) for how to have between them (commonly called interfaces). The HCI protocol is used to initialize the dongle and connect it to the bluetooth device to which it communicates, resulting in the sending and receiving of HCI ACL data packets.
The controller (bluetooth USB dongle) is easily called a dongle, and the host is called a dongle host.
See the figure below. The dongle host transmits HCI instructionpackets and HCI ACL data packets to the dongle. The dongle host then receives the response from the dongle as an HCI event packet.
1． The HCI instruction packet is sent from the dongle host to 0x00 through the endpoint, but must be sent as a class request.
2． HCI event packets are inter-forwarded from the dongle 0x81 the endpoint to the dongle host.
3． HCI ACL data packets are sent in bulk transfer from dongle host to dongle through endpoint 0x02 and from dongle to dongle host 0x82 through endpoint 0x82.
By the way, the HCI protocol uses the little endian method to represent integers of multiple bytes. It is a method of side-by-side from the lowest byte to the top byte, although the integers of multiple bytes are parted one byte at a time. For example, 0x1234 byte of the first step (0x indicates a hex representation) is 0x12 and the lowest byte is 0x34 value. In the Little Endian method, 0x34 0x12 with the same number.
Below, when written as a manual, it means The Host CONTROLLER INTERFACE FUNCTIONAL SPECIALIZATION (PartE) of Volume2 of the bluetooth manual Core v2.1 + EDR.pdf.
[image: http://www.yts.rdy.jp/pic/GB002/dongle.jpg]

HCI Command Packet
Packets mean chunks of data, and
HCI instruction packets take the form of OpCodes, Parameter Numbers, and
Parameter Columns.
(1) Opcode (2 byte width)
HCI instructions are classified by OpCode Group (opcode group) by large number as follows.
Link Control Commands:
0x01 Link Policy Commands: 0x02
HCI Control and Baseband Commands: 0x03
Informational Parameters Commands: 0x04
Stat us and baseband: 0x05
Testing Commands: 0x06 And
in each of these classifications, HCI instructions are organized by OpCode Command (distinguished by numbers from opcode instructions: 0x01). As noted above, the opcode is 16 bits (2 bytes) wide. Six bits from the top are OpCode Group Files (OGF: where opcode groups are placed) and the remaining 10 bits are OpCode Command Files (OCF: where opcode instructions are placed). For example, in the case of Read BD_ADDR Command, the opcode group is 0x04 and the opcode instruction is
0x09, so if you write them in a hentholy way, you get 000100 0000001001.

If this is expressed as a hentholym, 0x1009 is possible. However, because two-byte integers use the Little Endian method, the opcodes are arranged in the order of 0x09 0x10.
Note that the opcode instructions used are less than 0xFF, so the opcode is the one that quadruples the opcode group after the opcode instruction (left shifted twice) and is arranged. In the example above, the opcode instruction 0x09 followed by the opcode 0x04× 4=0x10, which quadruples the opcode group. Conversely, if the opcode becomes 0x09 0x10, the opcode instruction is 0x09, and the opcode group can be determined to be 0x10 by 4 (0x04 shifted twice).
(2) Number of parameters (1 byte width)
The number of bytes of the parameter that follows this number. If there is no parameter, it is 00. It is important not to forget this. In the end, an HCI instruction always consists of more than 3 bytes.
(3) Parameter (byte width changes)
It changes depending on each opcode, so please refer to the manual.
○ An example of
an HCI instruction packet is an example of the first part of the firmware.
case HCI_CMD_RESET:
buf1[0]=0x03;
buf1[1]=0x0c;
buf1[2]=0;
data_size=3;
DemoState = BT_STATE_WRITE_CLASS; (class request)
HciState = HCI_CMD_RESET_END;
break;
Here, an HCI instruction packet of 03 0c 00 is sent from the PIC in hedongle as a class request.
03 0c:Since the opcode instruction is 0x03 and the opcode group is 0x03 (0x0c is broken by 4), you can see from the manual that it is a Reset Command. Instruction to reset the dongle.
00:Indicates that the parameter following this number is zero. As I wrote above, this is mandatory and should not be omitted.

HCIイベント・パケット（HCI Event Packet）
HCI event
packets Take the form of EventCode, Parameter Count, and
Parameter Column.
(1) Event code (1 byte width)
A number that represents the type of event. See section 7.7 of the manual.
(2) Number of parameters (1 byte width)
The number of bytes of the parameter that follows this number.
(3) Parameters (byte width changes)
It changes depending on the event code, so please refer to the manual.
○ HCI event packet
example Take the connection completion event packet as an example of an HCI event packet. For example, in a heddinger column,
 03 0B 00 2A 00 B7 7A 95 CE 4E E8 01 00.
03:Represents connection complete event.
0B:The number of bytes of the parameter following this number or less.
00:Status, 00 indicates successful connection.
2A 00: Connection Handle is used to communicate between bluetooth devices.
B7 7A 95 CE 4E E8:Represents a unique number attached to the bluethooth (dongle) of the connected device (e.g. PC), i.e. Bluetooth Device Address.
01:In the type of link, 01 shows the ACL described below.
00:I think it's information about encryption at the link level, but I don't understand it. I think 00 means it's not encrypted.
The important thing here is the connection handle value. Connection handles are always required when HCI ACL data packets are exchanged between two bluetooth devices. Note that 2A 00 is a little endian 0x002A represents a different number, but the top 4 bits are not meaningful. In 0x02A the connection handle is the value of the connection handle.

HCI ACL Data Packets
When a bluetooth device is available for connectivity, HCI ACL data packets are exchanged between the two devices (some called HCI SCO Data Packets are not discussed here). ACL stands for Asynchronous Connection-Less. When sending data, it is asynchronous and does not establish a connection relationship (Connection-Less). Asynchronous communication is a communication that transmits data at any time without matching the timing of the clock signal in the sense that it is not regular. Connectionless communication also means communication in which data is transmitted without checking whether the other party can receive the data.
HCI ACL data packets
have the form (Connection Handle+PB Flag+BC Flag), ACL data length, and
ACL data column.
For example, in a hexatholydyd row, 2A 20 0C 00 08 00 01 00 02 01 04 00 01 00 40 00.
(1) Connection Handle+PB Flag+BCFlag (2 bytes
wide) Of the 2 bytes, 2 bits are Broadcast_Flag from the top, the next 2 bits are Packet_Boundary_Flag, and the remaining 12 bits are connection handles.
Broadcast_Flag: When sending data to multiple bluetooth devices, it is called broadcast transmission, but here, since the bluetooth device to be dealt with is one, it is 00 in the second-line number.
Packet_Boundary_Flag: If the transmitted data is short, it can be sent in one packet. However, if the transmitted data is long, it must be sent in several packets due to the packet length limit. In both cases, the first packet you send Packet_Boundary_Flag the number 10 in a he/shed. If the packet is split and the packet is subsequent to the first packet sent (the second or subsequent packet), Packet_Boundary_Flag is 01 in a two-way number.
Where BC Flag=00 has a connection handle of 0x02A and the first packet to be sent, writing (Connection Handle+PB Flag+BC Flag)
in a hexadecade is 00 10
00000010101010. If this is expressed as a hentholym, 0x202A value. If you actually send it out as a packet, you're going to 0x2A after the 0x20 as a little endian. Also, if you send one data into several packets, and the second and subsequent packets will 0x2A the 0x10 after the packet. For BC Flag=00, the above is illustrated as follows:
[image: http://www.yts.rdy.jp/pic/GB002/acl_packet.jpg]
(2) ACL data length (2 bytes wide) The number
of bytes representing the length of the data. It's Little Endian, so be careful.
For example, if this value is 0C 00, as in the example above, the actual data length is 0x000C (12 bytes). Conversely, if the actual data length 0x000C, the order is 0C 00 on the packet.
(3) ACL data
columns (byte widths change) The data to be transmitted (08 00 01 00 02 01 04 00 01 00 00 00 00) is listed here.

return

	

Connection via HCI protocol
When connecting two bluetooth devices with an HCI radar, we will explain what to do. As an example, let's take the connection between PIC-PIC HCI layers (PIC-pic-to-PIC connections). The words master and slave come out. Both the master and the slave are hardware-based, both of which consist of pic24FJ64GB002 and bluetooth USB dongles, but the distinction will be clear when it comes to paging the slave. For a detailed description of HCI instruction packets and their response event packets, see Volume2 PartE (HOST CONTROLLER INTERFACE FUNCTIONAL SPECIAL) in the bluetooth manual Core v2.1 + EDR.pdf (hereinafter referred to simply as the manual). For HCI instruction packets, if the opcode group is, for example, 0x01, it is described in section 7.1 (0x02 is 7.2). Event packets are also described in section 7.7.

Initialize dongles
The master and slave must initialize their dongles. Initialization in the master is the same as that in the slave, so it is described in bulk. The dongle host repeatedly issues an HCI instruction packet to the dongle and receives its response, the HCI event packet. The following five HCI instruction packets are used to initialize the dongle: Please refer to the firmware for instructions and log files for responses. If you do not refuse, it will be written in he/shedd. Note that this section also returns less important HCI event packets from the dongle to the dongle host, which is ignored (read off) on the firmware, so we won't discuss it again.
(1)
Dongle reset instruction 03 0c 00
03 0c:Opcode instruction is 03 and opcode group is 03
(0c is broken by 4), reset command 00: Number of data

following 0 bytes Response 0E 04 01 03 0C 00
0E: Command Complete Event
04: 4 bytes of data
following 01 : The number of HCI instructions that may be sent
from the dongle host to the dongle after this indicates a response to the number of HCI instructions 030C : HCI instruction 03 0C.
00:Reset Command's Return Parameters show that it represents Status. 00 means success

(2) Dongle Address (BD_ADDR) Acquisition Instruction 09 10 0
09 10:Opcode Instruction is 09, Opcode Group
is 04, Read BD_ADDR Command 00:Number of data following 0 byte

response 0E 0A 01 09 10 00 22 0B 04 DC 1B 00
0E: Command Complete Event
0A: Number of data following 0x0A bytes
01:The number of HCI
instructions that may be sent from the dongle host to the dongle after this time 09 10:Indicating a response to HCI instruction 09 10.
00:readBD_ADDR Command's Return Parameters show that it represents Status. 00 means
success 22 0B 04 DC 1B 00:Read BD_ADDR Command Returns Parameters BD_ADDR show that it represents bluetooth device address. BD_ADDR is a 6-byte long number uniquely attached to the dongle.
(3) Name
the equipment instruction 13 0c 04 'y' 't' 's' 00
13 0c:The opcode instruction is 13
and the opcode group is 03, and write local name Command 04: Thenumber of data following
is 4 bytes 'y' 't' 's' 00:Here is named yts, but the appropriate name is good. If it is 248 characters or less, but less than 248 characters, the final character is added 0x00 example. When connected to a PC, it appears as the name of the icon.

Response 0E 04 01 13 0C 00 0E: Command Complete Event 04: Thenumber of data following is 4 bytes 01:The number of HCI instructions that may be sent from the dongle host to the dongle after this 13 0C:Indicates a response to HCI instruction 13 0C.

00:The Return Parameters in the Write Local Name Command show that it represents Status. 00 means success

(4) Instruction 24 0c 03 04 05 00;
24 0c:Opcode instruction is 24 and opcode group is 03, write
Class of Device Command 03:The
number of data following is 3 bytes 04 05 00:Device class (Class_of_Device). When connected to a PC, an icon corresponding to this class appears. Here, the Major Device Class (primary device class) is the Peripheral Class (mouse, joystick, keyboard, etc.) and the Minor Device Class (secondary device class) is the joystick. For more information, seeThe General- and Device-Special Access Codes (DIACs) and Associated Numbers - Bluetooth Baseband to determine which device class to use. "Even if you set it up wrong, you will only see something you don't expect from the icon, so feel free to decide. I was told that in some cases, the passkey may be forcibly requested, so I found that it was necessary to choose it appropriately. CoD is the first to write out a part of .txt class.

Response 0E 04 01 24 0C 00 0E: Command Complete Event 04: Thenumber of data following 4 bytes 01:The number of HCI instructions that can be sent from the dongle host to the dongle after this 24 0C:Indicates a response to HCI instruction 24 0C.

00:Write Class of Device Command Returns Parameters show that it represents Status. 00 means success
(5)
Start scanning instruction 1a 0c 01 03
1a 0c:Opcode instruction is 1a and opcode group
is 03, Write Scan Enable Command 01:The number of data
following is 1 byte 03:Inquiry Scan and Page Scan are possible (0x03). You can make Inquiry Scan impossible and invisible to other bluetooth devices, or you can prevent Page Scan from being connected as impossible. For details, please refer to the manual.

Response 0E 04 01 1A 0C 00 0E: Command Complete Event 04: Thenumber of data following is 4 bytes 01:The number of HCI instructions that may be sent from the dongle host to the dongle after this 1A 0C:Indicates a response to HCI instruction 1A 0C.

00:The Return Parameters in write Scan Enable Command show that it represents Status. 00 means success
Note in (5):
The Inquiry is an inquiry, or investigation, into what slaves the master has around him. It does not connect by querying, but it sucks up information BD_ADDR the slave (dongle) or the top.
Paging is the connection of a slave that the master recognizes in The Inquiry to a specific slave. Information such as the slave's value obtained during BD_ADDR to identify the slave and the Clock_Offset slave described below are used. The connection is to ensure that the master and slave are frequency popping in the same pattern (usually 6,000 times per second, changing frequencies away from each other by 1MHZ) so that HCI ACL data packets can be sent and received as a result. By the way, I imagine that paging the process of connecting to a slave BD_ADDR the number of pages of the slave and likened it to opening the page.
Scanning is enabled by allowing the slave side to respond to queries and paging from the master. In more detail, the slave pops its frequency at a certain time interval, typically 1.28 to 2.56 seconds. This is called a frequency scan, and communication is possible only when it happens to match the master frequency during the scan. It is different from the meaning of communication (at the time of Inquiry: it becomes possible to communicate for a moment) and connection (page time: always communicatable; both master and slave pop frequency in the same pattern), so please do not confuse it.

Connection process
It is a process from (1) to (8) as shown in the figure below. As a result of the process of (7), the processes of (5) and (8) will be executed. This means that if you grant connection permission, the connection completes to both dongle hosts.
[image: http://www.yts.rdy.jp/pic/GB002/hid_connect.jpg]
Connection process from the host's point of life
(1)
Inquiry 01 04 05 33 8b 9e 05 01 01
04:Opcode instruction is 01, opcode group
is 01, In quy Command 05: Specifieswhether
the number of data following is 5 bytes 33 8b 9e: LAP (Lower Address Part);Limit the slaves that respond to the Inquiry. If not 0x9E8B33 use the General/Unlimited Inquiry Access Code (GIAC). Use the limited 0x9E8B00 Access Code (LIAC) to restrict it. We're using the former here. ForLAP, see Associated Numbers - Bluetooth Baseband.
05:Inquiryonly for 05, i.e. (5 * 1.28 seconds)
01:Number of slaves to look for
(2) Query
result 02 0F 01 40 E4 03 DC 1B 00 01 02 00 04 05 00 C0 6D
02: Inquiry Result Event
0F:Number of data following 0x0F
byte 01:
number of slaves found 40 E4 03 DC 1B 00:BD_ADDR of slaves (dongles of slaves); Bluetooth
Device Address 01:P age_Scan_Replication_Mode; in the mode decided on the slave side, R0, Three modes are set: R1 and R2. For R0, 0x00, for R1 0x01 and for R2 0x02 is different. As I wrote before, slaves pop their frequencies in a certain repetition time, typically 1.28 to 2.56 seconds. During that repetition time, the slave cannot receive the master's radio waves at any time, but only at a certain time interval (usually 11.25 milliseconds) from the beginning of the repetition time. You can specify these "repetition times" and "time intervals between which radio waves can be received" to some extent. Specifically, R0 (repeat time is 1.28 seconds or less, actually received time is equal to repetition time, 1.28 seconds or less), R1 (repetition time is 1.28 The actual reception time is usually 11.25 milliseconds, and R2 (repeat time is 2.56 seconds or less, and actual reception time is usually 11.25 milliseconds). As a result, the connection takes approximately 200 milliseconds to complete, R1 to approximately 2.2 seconds, and R2 to approximately 3.5 seconds. R0 seems to be fast to connect, but since it consumes power while the slave is in the receiving state, power consumption is significantly increased compared to other modes, so it is not used much.
02 00:No
sense because you are not using 04 05 00:slave Class_of_Device
C0 6D:slave Clock_Offset. Each master and slave has their own clock counter (an 8-bit counter that increases by one every 312.5 microseconds and returns to its value for about a day). However, since the values of these counters are different from each other, the slaves need to know the difference (Clock_Offset) between the master and the slave in order to match the timing of hopping, etc. The slave obtains the value of the master clock Clock_Offset by adding a number of values to the value of its own clock counter. This allows the master and slave to change the hopping frequency at the same time, for example, using the master's clock counter as the reference clock.
(3) Query
completed 01 01 00
01:
Inquiry Complete Event 01: The
number of data following is 1 byte 00: Status, 00 means the Inquiry was successful

(4) Connection request (Paging) 05 04 0D 40 E4 03 DC 1B 00 10 00 01 00 C0 6D 00
05 04:Opcode
instruction is 05 Group is 01,
Create Connection Command 0D:The number of data following 0x0D bytes 40 E4 03 DC 1B 00: Set the number of slaves (dongles) obtained BD_ADDR the Inquiry.
10 00:P jacket_Type, here we use dh1 type. The DH1 type provides a maximum data transfer rate of 172.8 kbps. Refer to the manual when using other types.
01:Set the number of slave Page_Scan_Repetition_Mode during Inquiry.
Fixed at 00:00.
C0 6D:Set the slave Clock_Offset during Inquiry.
00：Allow_Role_Switch。 Here, the master remains the master, and it is not changed thereafter. For more information, see the manual.
(5) Connection
complete 03 0B 00 2A 00 40 E4 03 DC 1B 00 01
00 03: Connection Complete Event.
0B:The number of bytes of the parameter following this number or less.
00:Status, 00 indicates successful connection.
2A 00: Connection Handle
means 0x02A 40 E4 03 DC 1B 00: Slave (dongle) BD_ADDR
01:Link type, 01
is ACL 00:I think it's information about encryption at the link level, but I don't understand it. 00 means that it is not encrypted.

Connection process as seen from the slave
The dongle itself automatically responds to the Inquire, so the PIC doesn't have to do anything. However, you will be waiting for the next connection request to be written.
(6) Receive connection
requests 04 0A 22 0B 04 DC 1B 00 04 05 00 01
04: Connection Request
Event 0A:Number 10
bytes 22 0B 04 DC 1B 00:master (dongle) BD_ADDR
04 05 00:
master device class 01:link type, 01 is ACL
(7) Connection
permission 09 04 07 22 0B 04 DC 1B 00 01
09 04:Opcode instruction is 09, opcode group is 01, Accept Connection Request Command
07: Setthe number of data following 7
bytes 22 0B 04 DC 1B 00:BD_ADDR master (dongle).
01:Remain slave. In order to become a master, it is 00.
(8) Connection
completed 03 0B 00 2A 00 22 0B 04 DC 1B 00 01 00
03: Connection Complete Event

0B:The number of data following is 0x0B bytes 00:status, 00 indicates successful connection.
2A 00:Connection Handle means 0x02A
22 0B 04 DC 1B 00: Master(dongle) BD_ADDR
01:Link type, 01
is ACL 00:I think it's information about encryption at the link level, but I don't understand it. 00 means that it is not encrypted.

This enables HCI ACL data packets to be sent and received in both directions between the master and slave.

return

	a

Securing channels with L2CAP (protocol)
L2CAP stands for Logical Link Control and Application Protocol and is a higher protocol in the HCI protocol. There are several things to do with this, and I'll explain only one of them. It is to ensure a logical channel (communication path) that sends data between the master and the slave.
Structure of L2CAP data packets
HCI ACL data
packets have the form of (Connection Handle+PB Flag+BC Flag),
ACL data length, and ACL data columns,as written in the HCI Protocol chapter. The L2CAP data packet is an HCI ACL data packet, but the

ACL data column in it is more structured,
and i) for the first packet to be sent (PB Flag=10), the ACL data column = L2CAP total data length, channel ID, L2CAP
data column ii) for the split second or subsequent packet (PB Flag=01)
*1 ACL data column = L2CAP

data column structure. In this chapter, it only comes out as an example if it is not divided, but in the chapter of SDP (protocol) there is an example when it is divided.
*1) If the packet is long, split the packet.
(1) L2CAP Total data length (2 byte width)
The total length of the L2CAP data column is given byte length. It does not include two bytes of the next channel ID (not L2CAP data). If the packet is not split, it is the length of the (all) L2CAP data contained in the packet. It is important to note that packets are split. In this case, it is the total L2CAP data length when all the L2CAP data contained in each split packet is integrated and considered, not the length of the L2CAP data contained in one packet.
(2) Channel ID (CID: 2 byte width)
Channel number. The Signaling channel is numbered 0x0001, and the number of the data channel is at least 0x0040 (the channel for sending and receiving data).
(3) L2CAP data column (byte width changes) It changes depending
on the length of the data to be sent and received.
○ For example, look
at packets in a hex
column that are 2A 20 09 00 05 00 40 00 10 02 03 04 05
in a hex.
2A 20:(Connection Handle+PB Flag+BC Flag) connection handle is 0x02A, PB Flag is 10, BC Flag
is 00 09 00: Thenumber of bytes representing the length of the ACL data following this number or less. Now it's 9 bytes.
05 00: The number of bytes representing the length of the L2CAP data, which is now 5 bytes. Two bytes of the next channel ID do not enter the data length.
40 00:Channel ID 0x0040 of the data, so you can see that the following data is normal data.
01 02 03 04 05:The L2CAP data column is sending or receiving 5 bytes of data columns that are 01 02 03 04 05.

Securing channels (communication channels) with L2CAP data packets
As an application of bluetooth-HID, we have given an example of connecting a wii remote control (slave) and a PIC board (host): An application example of bluetooth-HID (wii remote control). We will use the log file .txt wii2 at this time to explain how to secure the channel. In order to secure a single channel, the work to be done between the master and slave is shown below. Six L2CAP data packets (from (1) to (6) are sent and received.
[image: http://www.yts.rdy.jp/pic/GB002/l2cap.jpg]
The contents of the L2CAP data packets that are sent between (1) and (6) can be seen by looking at the log file, but as follows. However, all HCI events are ignored here (note that in the actual firmware, if you do not read this, the memory that stores the read data, that is, the buffer, will be full and will be errory. It's enough to just read it. ）。
① 2A 20 0C 00 08 00 01 00 02 01 04 00 11 00 44 00
② 2A 20 10 00 0C 00 01 00 03 01 08 00 40 00 44 00 00 00 00 00
③ 2A 20 10 00 0C 00 01 00 04 02 08 00 40 00 00 00 01 02 40 00
④ 2A 20 12 00 0E 00 01 00 05 02 0A 00 44 00 00 00 00 00 01 02 40 00
⑤ 2A 20 10 00 0C 00 01 00 04 02 08 00 44 00 00 00 01 02 B9 00
⑥ 2A 20 12 00 0E 00 01 00 05 02 0A 00 40 00 00 00 00 00 01 02 B9 00
I will explain them one by one below. For more information, see Part A: Logical Link Control and Application Protocol Special in Vol3 in the manual Core v2.1 + EDR.pdf.
(1) L2CAP connection request (host PIC
requested to slave wii) 2A 20 0C 00 08 00 01 00 02 01 04 00 11 00 44 00
2A 2 0:(Connection Handle+PB Flag+BC Flag)
0C 00: Bytesrepresenting the length of
the ACL data 08 00: Bytes representing the length of the L2CAP data
01 00:Channel ID is 0x0001, so The following data means that it is not just data, but data for control.
02:Code 02 means CONNECTION REQUEST. Please refer to the manual.
01:Identitier: The number that is more decided by the request. If you send some requests, you will increase this value one by one. If you respond, be sure to use the same number as you would for a request. If you look at (2) below, you can see that the same numbers are used here.
04 00:
11 00:P SM (Protocol/Service Multiplexer), representing the length of the following data, and protocols such as SDP 0x0001, RFCOMM 0x0003, HID_Control 0x0011, HID_Interrupt 0x0013, etc. Here we HID_Control to create a channel for the game. For PSM,see Protocol and Service Multiplexor (PSM). Multiplexer doesn't understand.
44 00:Source CID L2CAP connection request is called source (requester) and requester is called destination. Give the source channel number (Source CID), i.e. pic channel number appropriately. However, 0x0040 than the number. Here, 0x0044 the best.
(2) L2CAP connection response (slave wii
responds to host PIC) 2A 20 10 00 0C 00 01 00 03 01 08 00 40 00 44 00 00 00 00 00 00
00 2A 20:(Connection Handle+PB Flag+BC Flag)
10 00: Bytesrepresenting the length of
the ACL data 0C 00: Bytes representing the length of the L2CAP
data 01 00: Instruction
channel 03:Code 03 is CONNECTION It can be seen
that it is a response to RESPONSE (connection response) 01: Identity: (1).
08 00:The
number of bytes representing the length of the following data: 40 00:D estination CID L2CAP connection requests, i.e. the wii channel number. The wii returns this value to the PIC side.
44 00:The value set by Source CID (1) returns. It's different from Destination CID and Source CID, but it can be the same. The host channel 0X044 the slave channel and 0X040 channel are now logically connected.
00 00:0x0000 means connection success. It continues to receive a response from the slave (wii) until this value is returned.
00 00:Status. You can ignore it here. See the manual for more information.
Now we're going to go into settings, but we'll have to let each other know how many bytes we can accept. First, the host issues an L2CAP configuration request and the slave returns the L2CAP configuration response to the host.
(3) L2CAP configuration request
(host PIC requested to slave wii) 2A 20 10 00 0C 00 01 00 04 02 08 00 40 00 00 00 01 02 40 00
2 A 20:(Connection Handle+PB Flag+BC
Flag) 10 00: Bytesrepresenting the length of
the ACL data 0C 00: Bytes representing the length of the L2CAP
data 01 00:
Instruction channel 04: Code 04 is CONFIGURATION REQUEST (configuration request)
02: Identitier: (1) is a different request, so give a different number from 00. It can be any number. Here
we give you the wii channel number because
it is 02 08 00: 40 00:D estination CIDs that represent the length of the following data.
00 00:Flags With flags only the last bit makes sense. If all of the following configuration options fit in this packet 0x0000 the configuration: If it does not fit, 0x0001 be a problem.
01 02 40 00: Inthe configuration option, the first two bytes are of type 01, meaning that the byte length is 02 bytes (2 bytes of 40 and 00). In this case, it is told to the other party (wii) that the person who made this request (PIC) can receive L2CAP data up to 0x0040 bytes at a time.
(4) L2CAP configuration response (slave wii
responds to host PIC) 2A 20 12 00 0E 00 01 00 05 02 0A 00 44 00 00 00 00 01 02 40 00
0 2A 20:(Connection Handle+PB Flag+BC Flag)
12 00:Bytes representing the
length of the ACL data 0E 00: Bytes representing the length of the L2CAP
data 01 00: Instruction channel
05:Code 05 is CONFIGURATION Response (configuration response)
02: Identitier: Remains in response 02 to (3).
0A 00:Pic channel number from
44 00:Source CID, which represents the length of the following data.
00 00:A flag with only the last bit meaningful. If this is 0x0000 0x0001, it means that the L2CAP
configuration response does not fit into a single data packet, followed by a data packet 00 00:in the result, 0x0000 means success and 0x0001 means failure.
01 02 40 00:If successful, the configuration options given in (3) are returned as is. If you fail, you will get a rejection parameter (I've never failed, so I don't know what it's like).
Then, conversely, the slave (wii) issues an L2CAP configuration request, and the host (PIC) returns the L2CAP configuration response to the slave. Immediately after the slave returns (4) to the host, the next request arrives from the slave to the host.
(5) L2CAP configuration request (slave wii
requested from host PIC) 2A 20 10 00 0C 00 01 00 04 02 08 00 44 00 00 01 02 B9 00
2A 20:(Connection Handle+PB Flag+BC Flag)
10 00: 0C 00
bytes representing the length of the ACL data : 01
00 bytes representing thelength of the L2CAP data :
Instruction channel 04:Code 04 is CONFIGURATION REQUEST 02
:Identiier:Identifire: Set by slave.
08 00:The
number of bytes 44 00:D estination CIDs representing the length of the following data, so it is the receiving party of the request, i.e. pic. Please compare it with the case of (3). Even if you say the same Destination CID, it is important to note that the Destination CID will change depending on which one issues the request.
00 00:See flag (3).
01 02 B9 00:In the configuration option, tell the other party (PIC) that the person who made this request (wii) can receive 0x00B9 bytes of L2CAP data at a time. See also (3).
(6) L2CAP configuration response
(host PIC responds to slave wii) 2A 20 12 00 0E 00 01 00 05 02 0A 00 40 00 00 00 00 01 02 B9 0 0
2A 20:(Connection Handle+PB Flag+BC Flag)
12 00:Bytes representing the length of
the ACL data 0E 00: Bytes representing the length of the L2CAP
data 01 00: Instruction channel
05: Code 05 is CONFIGURATION Leave the same number
as the response to RESPONSE (configuration response) 02: Identitier: 0x02 5).
0A 00:The number of bytes
representing the length of the following data 40 00: The person who issued the Source CID request is wii, so this value is the value. This can also be seen compared to (3), but even if it is the same Source CID, the Source CID will change depending on which one makes the request, so be careful.
00 00:A flag with only the last bit meaningful.
00 00:In 0x0000, success means success.
01 02 B9 00:If successful, it should return the same configuration options given in (5).
For HID services, you need two channels: one for control and one for interacting (similar to normal USB communication; for example, you can think of the former as endpoint 0 and the latter as endpoint 1). In the example above, we have a channel for control (HID_Control PSM=0x0011), but we also need to have a channel for interlapto (HID_Interrupt PSM=0x0013). The actual L2CAP data packet is as follows: I think it's easy to understand.
① 2A 20 0C 00 08 00 01 00 02 03 04 00 13 00 45 00
② 2A 20 10 00 0C 00 01 00 03 03 08 00 41 00 45 00 00 00 00 00
③ 2A 20 10 00 0C 00 01 00 04 04 08 00 41 00 00 00 01 02 40 00
④ 2A 20 12 00 0E 00 01 00 05 04 0A 00 45 00 00 00 00 00 01 02 40 00
⑤ 2A 20 10 00 0C 00 01 00 04 03 08 00 45 00 00 00 01 0 2 B9 00
⑥ 2A 20 12 00 0E 00 01 00 05 03 0A 00 41 00 00 00 00 00 01 02 B9 00
The two channels are illustrated as shown in the following figure.
[image: http://www.yts.rdy.jp/pic/GB002/hid_l2cap.jpg]

Now, let's go into the bluettoth HID profile err than the L2CAP story, but let's take a look at what happens after securing the channel using the log file wii2.txt. If you export only HID_READ_FIRST_DATA L2CAP data packets below the "data" of the log file,
① 2A 20 08 00 04 00 45 00 A1 30 00 00
② 2A 20 07 00 03 00 41 00 A2 11 40
③ 2A 20 08 00 04 00 45 00 A1 30 00 02
④ 2A 20 08 00 04 00 45 00 A1 30 00 00
To read these,see data from the wii remote control (called the wii manual) and HUMAN INTERFACE DEVICE (HID)PROFILE (b_HID) 7. The following section 3 is required.
(1) Information that the wii remote control has been moved from the PIC to the PIC has been sent that the button on the wii remote control has been moved. This is because when connecting the PIC and the wii remote control, press the buttons 1 and 2, and when the connection is finished, both buttons are separated. As it is, if you hold down buttons 1 and 2, another data (the end of the data is 03) will be sent. First, the PIC must read this data bucket.
2A 20 08 00 04 00 45 00 A1 30 00 00
2A 20:(Connection Handle+PB Flag+BC Flag)

08 00:ACL Data Length 04 00: L2CAP
Day Length 45 00:Destination Data Channel. The meaning that data was sent to the INTERrupt channel (data channel) of the PIC.
A1:b_HID in section 7.4.9 DATA of the manual, but it means input data.
According to the 30:wii0x30 the name is the report ID number in the HID that sends the information for the button.
00 00:Means the button has been moved. No buttons are currently pressed.
(2) From pic to wii remote control, we have sent an instruction to turn on the third LED (light emitting diode) of the wii remote control.
2A 20 07 00 03 00 41 00 A2 11 40
2A 20:(Connection Handle+PB Flag+BC Flag)
07 00:ACL
Data Length 03 00: L2CAP
Day Length 41 00:Destination Data Channel. The meaning of sending data to the Interrupt channel (data channel) of the wii remote control.
A2:b_HID in section 7.4.9 DATA of the manual, but it means output data.
According to the 11:wii0x11 the report ID number in the HID that receives the LED information.
40:0x40means the third (LED) in 0100 when written in henthes. If you want to light the second LED 0x20 be the same as the first one (0010).
(3) means that button 1 is pressed, and (4) means that the button has been released.

return

	

Protocol (SDP)
Need for SDP
SDP is an abbreviation for service discovery protocol. In terms of bluetooth, it is a service provided by profiles. If you search on the web, you'll see what's going on with your profile, so here's a description. However, when you are developing firmware, it seems to call it a service at a lower level. For example, RFCOMM is not a profile, but is included in the service.
Now, let's think that the master is a personal computer (PC) and there is a bluetooth device (slave) with various services around it. The PC does not know what services the slave can provide, so it contacts the slave. In response, the slave transfers information about the services it can provide to the master. SDP is a communication procedure (protocol) that provides for the exchange of such inquiries and responses. If the slave is a PIC and wants to connect to a PC, understanding SDP is unavoidable. This is because PCs always ask what kind of services pic has.
By the way, when the PIC (master) and the wii remote control (slave) are connected, the SDP does not show up anywhere. In this case, it is unders been unders been possible that the wii remote control has a service that becomes bluettoth-HID, and when creating the firmware for the PIC, there is an assumption that only bluettoth-HID should be supported. In other words, as a master, there was no need to look into the services that slaves could provide (because they deach know that it was a bluettoth-HID service), so SDP didn't come into play.
For manuals, such as the following, bluetooth manual Core v2.1 + EDR.pdf Volume 3; See Service Discovery Protocol (SDP) in Part B.
By the way, SDP (protocol) uses the big endian method to represent integers of multiple bytes. It is a method of side-by-side from the top byte to the lowest byte, although the integers of multiple bytes are parted one byte at a time. For example, 0x1234 byte of the first step (0x indicates a hex representation) is 0x12 and the lowest byte is 0x34 value. In the Big Endian method, 0x12 0x34 will be arranged as it is.

Data Types in SDP
SDP places the following data types at the beginning of the data to indicate integers, data columns, and so on: For example, to represent an unsigned 0x1234 integer integer, 0x09 0x12 0x34 as a number. Also, to represent the string abc, 0x25 0x03 'a' 'b' 'c' (0x03 is the length of the string).

0x08: Unsigned 1-byte integer 0x09: Unsigned 2-byte integer 0x0a: Unsigned 4-byte integer 0x19: 2-byte UUID (see UUID) 0x25: String (represents string length in the next byte of 0x25) 0x28: Boolean takes only two values: "1 is true" and "0 is false".

0x35: Data column* (the next byte in 0x35 represents the data
column length) 0x36: Data column* (the next two bytes of the 0x36 represent the data column length)
*) I wrote the data column here, but in the original language it is Data element sequence. When deciphering SDP, you may want to replace 0x35 representing the data column with one byte (total of 2 bytes) representing the length of the subsequent data column, or 0x36, and 2 bytes (total 3 bytes) representing the length of the subsequent data column with the front parentheses "("). Note that the parentheses ") for the previous parentheses" are at the end of the data column.

Data format of service content
There are two main types of service content formats to return to the host, and I think that it is easy to understand if you write them abstractly as follows.
(1) For example, in the case of
bluesoleil stacks: per service (service content)
(2) For example, in
the case of Microsoft stack: ((Contents of Service 1) (Contents of Service 2) (Contents of Service 3)...) Of
course, when there is only one service ((contents of service 1)).
Focus on the pre parentheses "("). For the front parentheses, 0x35 +1 byte or 0x36 +2 bytes are supported. One or two bytes represents the number of data in the service content that follows. Nowlook at hid_mouse4.zip\SDPdata\bluetooth\data.h that comes out of unziping the hid_mouse4. Since the beginning of the
buf[] array is 0x36,0x00,0xf0,
it means that 0x00f0 bytes of service content data will follow. 0x36, 0x00, 0xf0 itself does not enter the number of data because it means "("). 0x0036 the end of the data bytes, and the parentheses are virtual. Then you can see that the buf[] array is written in the form of (the contents of the service).
On the other hand, hid_mouse4 \SDPdata\microsoft\data.h. The first of the
buf[] arrays is 0x36,0x00,0xf3,0x36,0x00,0xf0.
There are two pre parentheses.) The first bracket is 0x36,0x00,0xf3, indicating that there are 0x00f3 bytes of data therean, the next bracket is 0x36,0x00,0xf0, and there are 0x00f0 bytes of data (the contents of the service) therean. 0x00f3 difference between 0x00f0 bytes is equivalent to three bytes of 0x36,0x00,0xf0. 0x00f3 the end 0x00f0 bytes of data, and the parentheses are virtual. parentheses are double, such as ""). Therefore, you can see that the buf[] array is written in the form of (the contents of the service).
Now, the format of the service contents, but if you
look at data.h, the next parentheses are 0x09,0x00,0x00,
0x0a,0x00,0x01,0x00,0x00,
Where the first line is the Attribute ID and the second line is the Attribute Value. The contents of the service are expressed by repeating the attribute ID and the attribute value. Since the attribute ID is written as an unsymoided 2-byte integer (0x09 +2 bytes), I think that you can see where the attribute ID is by simply looking at the data of the SDP.
Now, let's take a look at the example above. Since the attribute ID 0x09,0x00,0x00, it is set as an unsealed 2-byte 0x0000. Therefore, the manual tells you that the attribute is a ServiceRecordHandle attribute. When there are several services, you number each service to distinguish them, called serviceRecordHandle. This attribute gives that number. 0x0a, 0x00, 0x01, 0x00, 0x00, and 0x0a, it means that the subsequent four bytes are unsealed integer types, so the attribute value is 0x00010000 value. In the end, you declare that you want 0x00010000 first service record handle. Note that the service record handle must 0x00010000 than the same value.
Here's another example. If you look at
data.h, you can find 0x09,0x00,0x04,
0x35,0x0d,,
0x35,0x06,0x19,0x01,0x00,0x09,0x00,0x11,
0x35,0x03,0x19,0x00,0x11,
and so on. The first line is a 0x0004 attribute ID, which you can see in the documentation that it represents the ProtocolDescriptorList attribute. The attribute values described after the second line are ((0x19,0x01,0x00,0x09,0x00,0x11), and (0x19,0x00,0x11) if you put parentheses after the number of bytes indicated by the 0x35+1 byte. And if you take into account that 0x19,0x09 is a data type ((UUID=0x0100, PSM=0x0011), (UUID=0011),) that is (UUID=L2CAP, PSM=0x0011), (UUID=HIDP). In the end, L2CAP 0x11 that PSM secures the same channel and then uses HIDProfile.
Please refer to page 421 of rfcomm.pdf for RFCOMM and page 82 or later of HID_SPEC_V10.pdf for HID for what attribute ID is required for SPD. Also, as mentioned earlier, please refer to here for UUID.

Service Inquiry
Below, the master is a PC and the slave is a PIC. In addition, let's consider that an L2CAP channel dedicated to SDP is also secured (PSM = 0x0001 by securing it. For instructions on howto secure, see Securing channels in L2CAP (Protocol). ）。
Once you have an L2CAP channel dedicated to SDP, your PC will contact the PIC for services that the PIC can
provide. In other words,
a pc SDP_ServiceSearchRequest send a
0x02
(ID:0x02) or SDP_ServiceSearchAttributeRequest
(ID:0x06) from the PIC. In the former (e.g. bluesoleil stack), pic returns the service contents in the data format of (1) above. On the other hand, in the latter (e.g. Microsoft stack), the PIC returns the service contents in the data format of (2) above.
○ SDP_ServiceSearchRequest example of 0x02 (ID:

0x02) In the case of bluesoleil, I think that I do not use it much, so I will omit it. If you can understand the following, I think you will be able to understand it on your own.
○ SDP_ServiceSearchAttributeRequest example of a 0x06

(PDU ID=yts_xp_mouse.txt) Log file file. Look at SDP_SEARCH_REQ bottom of the different labels in this file.
2A 20 18 00 14 00 44 00 06 00 00 00 0F 35 03 19 01 00 03 F8 35 05 0A 00 00 FF FF 00.

The meaning of this is as follows.

2A 20 :(Connection Handle+PB Flag+BC Flag) 18 00: Bytes representing the length of the ACL data 14 00 : Data channel 06:06 for SDP on L2CAP data 44 00 :P IC means SDP_ServiceSearchAttributeRequest 00 00:Transaction ID:00
Increase by 00 to 1. The number that is more decided by the request. If you send several requests, you will increase this value one by one. If you respond, be sure to use the same number as you would for a request.
00 0F:Bytes representing the length of the following
data: This and beyond all represent L2CAP in Big Endian 35 03 19 01 00:Service Search Pattern: (UUID=0x0100). We are asking what services are related to L2CAP. *1
03 F8:Limit the maximum number of bytes of service content from slaves that a host can receive 0x03F8 at a time. If the host's receive buffer is small, if the slave sends more bytes of data at a time, the data overflows from the buffer and cannot receive the data correctly. Therefore, here, the service contents can only be received up to 0x03F8 bytes at a time, so if it is longer, I ask the slave to send it separately.
35 05 0A 00 00 FF FF :This is where the AttributeID number (out of the slave) is looking for in which range. Here 0x0000 numbers 0xFFFF to 10, requesting service information for (i.e., all) AttributeID numbers in that range. *2
00:The first 0x00 available. ＊3
*1)35 03 19 01 00:0x35 0x03with brackets (0x03 is data length), 3 bytes represented by 0x03 is 19 01 00, and 0x19 represents a 2-byte UUID type, so the data can be written as (01 00) and (UUID=0x0100).
*2)35 05 0A 00 00 FF FF:35 05 is an under parentheses, 5 bytes represented by 0x05 is 0A 00 00 FF F, 0x0A is an unsigned 4-byte integer type, the data can eventually be written as (00 00 FF FF), and in the case of this request, it means from 0x0000 to 0xFFFF.
*3) If the service content to be passed is long, the slave will add information to the end of the service data how many bytes of the service content should start transferring data from the beginning next time, so the host will err on the attached data to this part. If you SDP_ATTR_RESP4a_RESP log data before and after the data, it is as follows:
2A 10 18 00 00 25 13 4E 69 6E 74 65 6E 64 6F 20 52 56 4C 2D 43 4E 54 2D 30 02 00 76 (last part of the first service data returned)
SDP_ATTR_RESP4a_RESP
2A 20 1A 00 16 00 45 00 06 00 01 00 11 35 03 19 01 00 03 F8 35 05 0A 00 00 FF FF 02 00 76 (SDP_ServiceSearchAttributeRequest body to request to slave)
Here, If you focus on the red data, you can understand the above. 02 is the number of bytes that follow (2 bytes of 00 76: 0x0076 2). Next time, 0x0076 the host to start transferring data from the second byte is the data shown in the first dark red (additional data). The second red data (errested data) requires the slave 0x0076 the second data transfer from the second. Note that the last service data that the slave sends to the host (the part of the additional data shown in dark red) always ends 0x00 the server.

Transfer service content
Response to a service inquiry. It's easy to talk if you can return all service content to the host at once for a service call, but due to L2CAP's data packet length limit, if the service content is large, it is split and returned to the host. Service inquiry, transfer of the first service content (+ additional data) divided, inquiry of the second service divided based on the additional data, transfer of the second service contents (+ additional data) divided based on the additional data, inquiry 0x00 of the third service divided based on the additional data, ... it will be a series of tasks. By the way, in order to transfer the service contents to the host, the service contents must be converted to L2CAP data packet format. The converted service content is, for example, as follows (for example, an L2CAP data packet can be arbitrarily split unless the length limit is exceeded).

SDP_ServiceSearchAttributeRequest 2A 20 18 00 14 00 44 00 06 00 00 00 00 0F 35 03 19 01 0 The first response to 0 03 F8 35 05 0A 00 00 FF FF 00
(SDP_ServiceSearchAttributeResponse), i.e. the first service content (+ additional data). Pick it up from the log file

and (1) 2A 20 1B 00 80 00 40 00 07 00 00 00 7B 00 00 76 36 00 F3 36 00 F0 09 00 00 0A 00 01 00 00 09 00
(2) 2A 10 1B 00 01 35 03 19 11 24 09 00 04 35 0D 35 06 19 01 00 09 00 11 35 03 19 00 11 09 00 05
③ 2A 10 1B 00 35 03 19 10 02 09 00 06 35 09 09 65 6E 09 00 6A 09 01 00 09 00 09 35 08 35 06 19
④ 2A 10 1B 00 11 24 09 01 00 09 00 0D 35 0F 35 0D 35 06 19 01 00 09 00 13 35 03 19 00 11 09 01
⑤ 2A 10 18 00 00 25 03 79 74 73 09 02 00 09 01 00 09 02 01 09 01 11 09 02 02 02 00 76.
I will explain one by one.
(1) 2A 20 1B 00 80 00 40 00 07 00 00 00 7B 00 76 36 00 F3 36 00 F0 09 00 00 0A 00 00 00 00 09 00
2A 20:(Connection Handle+PB Flag+BC Flag)
1B 00: (1)
Bytes representing the length of the ACL data in this data packet 80 00: The number of bytes representing the length of the entire L2CAP data from (1) to (5). Since (2) to (5) start with 2A 10, you can see that it is data sent divided. In other words, one data is formed from (1) to (5). Since the number of L2CAP data included in (1) is L2CAP data after 40 00 representing the channel ID, 0x1b-0x04 bytes (80 00 40 00 for 4 bytes drawn), (2) to (4) The number of L2CAP data included is 0x1b bytes, respectively, and the number of L2CAP data in (5) is 0x18 bytes, so overall (0x1b-0x04) + 3*0x1b + 0x18 = 0x80.
Data channel 07:07for
SDP at 40 00:P C
is 00 00:TransactionID, which means SDP_ServiceSearchAttributeResponse, and the number is the same as that in SDP_ServiceSearchAttributeRequest (request).
00 7B:The number of bytes representing the length of the entire L2CAP data since then. The above 0x80 bytes, which is 40 00 07 00 00 00, is 0x7B byte.
00 76:The number of bytes that represent the length of the total service data below. The above 0x7B 00 7B bytes to 0x79 number. By the way, the last 02 00 76 in (5) is not service data because it is a byte column (additional data) that means continuation as previously described. This 3 bytes 0x79 from the 0x76 account.
36 00 F3 36 00 F0 09 00 00 0A 00 01 00 00 09 00:The beginning of the service data.
(2) 2A 10 1B 00 01 35 03 19 11 24 09 00 04 35 0D 35 06 19 01 00 09 00 11 35 03 19 00 11 09 00 05
2A 10:(Connection Handle+PB Flag+BC Flag) Bc Flag is 01, which means a continued previous packet.
1B 00:(2)
Bytes representing the length of the ACL data in this data packet 01 35 03 19 11 24 09 00 04 35 0D 35 06 19 01 00 09 00 11 35 03 19 00 11 09 00 05: The part of the service data that follows the previous packet.
(3) and (4) are also the same patterns as (2), so the description is omitted.
(5) 2A 10 18 00 00 25 03 79 74 73 09 02 00 09 01 00 09 02 01 09 0 1 11 09 02 02 02 00 76
2A 10:(Connection Handle+PB Flag+BC Flag) BC Flag is 01, which means the continued packet.
18 00:(5)
Number of bytes representing the length of the ACL data in this data packet 00 25 03 79 74 73 09 02 00 09 01 00 09 02 01 09 01 11 09 02 02: Part of the service data following the previous packet.
02 00 0x00 76:Additional data; Next time, I'm 0x76 host to request data from the second byte of the service data. Therefore, the next time a PC requests a PIC, the SDP_ServiceSearchAttributeRequest will be 2A 20 1A 00 16 00 45 00 06 00 01 00 11 35 03 19 01 00 03 F8 35 05 0A 00 00 FF FF 02 00 76. Note that the number 00 01 in green is the Transuction ID, but it is also increasing one by one from 00 00.
Converting service data to L2CAP data packet format is difficult. It is also good to leave service data in the pic's data memory and convert it with firmware, but if you do not want to waste too much program memory of pic, it is a good idea to perform the conversion work on a PC and write only the converted one to the PIC's data memory. This converter can beseeed in the Data Array Software chapter for SDP.

Note: When you read the SDP documentation, you will see the words server and client. The person who provides the service, i.e., the slave is called the server, and the person who receives the service, that is, the host is called the client.

return

	

SSP (Just Works）
At first
For Bluetooth Ver. 2.1+ EDR and higher versions, secure simple pairing (SSP) can omit PIN code entry (just Works is available). This section explains instruction and response sequences in Just Works. For the first connection, the instruction and response sequences are a bit cumbersome because they are from steps 1 to 10. For more information, see Bluetooth Manual Core V2.1 + EDR Vol.2 PartF 4. See simple PAIRING MESSAGE SEQUENCE CHARTS in section 2. In addition, for reconnection (the second and subsequent connections), the instruction and response sequences are from steps 1 to 2. For more information, see Bluetooth Manual Core V2.1 + EDR Vol.2 PartF 4. Section 1 OF THE APPLICATION REQUESTED and 4. See SET CONNECTION ENCRYPTION in section 4.

First connection
Step 1: Optional OOB Information Collection
This step doesn't matter because it's about OOB (Out of Band: non-Bluetooth band). Ignore it. By the way, OOB is the authentication process in conjunction with methods other than Bluetooth. A well-known example of a non-Bluetooth method is NFC (Near Field Communication) communication. OOB is used for applications where the authentication process is automatically finished when a Bluetoot + NFC device is approached to the PC.

Step 2: Enable Simple Pairing
A step to enable simple pairing at the HCI protocol level. Specifically, during the initialization phase of the dongle (see the connection section by the HCI protocol), the Simple Pairing feature is enabled by giving a Write Simple Pairing Mode instruction from a PC or PIC to a dongle connected to them. For example, pic issues the following instructions:
Instruction 56 0c 01 01
03 0c:Opcode instruction is 03 and opcode group is 03 (0c is broken
by 4), Write Simple Pairing Mode Command 01:Continued The number of data is 1
byte 01: Simple pairing is possible Whereas the dongle (PIC dongle)

connected to the PIC returns the following response Response

0E 04 01 56 0C 00
0E:Command Complete Event
04: The numberof data following
is 4 bytes 01:The number of HCI
instructions that may be sent from the dongle host to the dongle after this 56 0C: Indicating a response to HCI instruction 56 0C.
00:Write Simple Pairing Mode Command's Return Parameters show that it represents Status. 00 means success

By the way, in order to receive events related to SSP from the dongle, you must set the event mask properly during the initialization phase of the dongle. On the PIC side, the following instructions are issued:
Instruction 01 0c 08 ff ff ff ff 1f ff 00
01 0c:Opcode instruction is 01 and opcode group is 03 (0c is broken by 4), write Simple Pairing Mode Command
08: Since the numberof data following is
8 bytes ff ff ff ff ff 1f ff 00:Little Endian, it represents the number 0x00 ff ff ff ff ff. The red of this number is the part related to Simple Pairing. See the Bluetooth Ver. 2.1 manual for the meaning of each bit in this section(ff).
Pic dongles, on the other hand, return a response of 0E 04 01 01 0C 00, which I think is easy to understand, so I'll omit the description.

On the other hand, on the PC side, we are working exactly the same as above.

Step 3a: L2CAP Connection Request for a Secure Service
In L2CAP, the work that begins with securing the channel is suspended to start authentication. Once the authentication is complete, the interruption will be lifted and there will be nothing in particular as a PIC.

Step 4: Start Simple Pairing
This is the step to start Simple Pairing. This is a sequence of instructions and responses between a PC and a DONGLE connected to a PC. PIC and PIC dongles are not involved. Please refer to the figure below for details of your work.
[image: http://www.yts.rdy.jp/pic/GB002/ssp4.jpg]
(1) Authentication request instruction (issued
to PC dongle) 11 04 02 2B 00
11 04:Opcode instruction is 11, opcode group
is 01, Authentication Request command 02: Numberof data following 2
bytes 2B 00: Connection Handle
(2) Link key request event (returned
to PC) 17 06 4D E0 03 DC 1B 00
17:Link Key Request Event
06: Thenumber of data following is 6
bytes 4D E0 03 DC 1B 00:P IC Dongle BD_ADDR (Bluetooth Device Address)
(3) Link key undeveloped response (tell PC dongle
that PC does not already have link key) 0C 04 06 4D E0 03 DC 1B 00
0C 04:Opcode instruction op at 0C Code group is 01, Link Key Request Native Reply Command
06: Thenumber of data following is 6
bytes 4D E0 03 DC 1B 00:P IC BD_ADDR

Step 5: IO Capability Exchange
IO means Input Output. Capability means ability, so it's a step to exchange information about what I/O capabilities a PC or PIC has between a PC and a PIC. Please refer to the figure below for details of your work. To avoid pin code entry, you need to answer pic's I/O ability that there is no button or display to enter the PIN code. If you do not have a button to enter the PIN code, of course, you will not be asked to enter the PIN code during the authentication process because you will not be possible to enter the PIN code. This is an authentication process called Just Works for the SSP.
[image: http://www.yts.rdy.jp/pic/GB002/ssp5.jpg]
(1) I/O capability request event (event entering
PC from PC dongle) 31 06 4D E0 03 DC 1B 00
31: IO Capability Request Event
06: 6
bytes of data following 4D E0 03 DC 1B 00:P IC Dongle BD_ADDR (Bluetooth Device Address)
[bookmark: _GoBack](2) I/O capability response (PC responds to PC
dongle) 2B 04 09 4D E0 03 DC 1B 00 01 00 05
2B 04:Opcode instruction is
2B, opcode group is 01, IO Capability Request Reply Command 09:DisplayYesNo with
9 bytes of data following 9 bytes 4D E0 03 DC 1B 00:P BD_ADDR (Bluetooth Device Address)
01:IO_Capability 0x01. This indicates that the PC has a display and a button that allows you to enter YesNo.
00:OOB_Data_Presentthe 0x00 means that OOB will not be used.
05:Authentication_Requirements means that mitm 0x05 is required, which is the first time.
(3) I/O capability request at LMP level (FROM
PC dongle to PIC dongle) It is an I/O capability request at the LMP (Link Manager protocol) level, and is not involved in firmware, so the description is omitted.
(4)
I/O capability response event 32 09 0A 6F FE 33 24 00 01 00 05
32: IO Capability Response Event
09:Data following The number is the
same as the last 3 bytes of 9 bytes 0A 6F FE 33 2400 :P C dongle BD_ADDR
01 00 05:(3), and the meaning is the same.
(5) I/O capability request event (event entering
PIC from PIC dongle) 31 06 0A 6F FE 33 24 00
31: IO Capability Request Event
06:Compare the number of data following 6
bytes 0A 6F FE 33 24 00:P C dongle
BD_ADDR (1).
(6) I/O capability response (PIC responds
to PIC dongle) 2B 04 09 0A 6F FE 33 24 00 03 00 00
2B 04:Opcode instruction is
2B, opcode group is 01, IO Capability Re quest Reply Command 09:9
bytes 0A 6F FE 33 24 00:P C dongle BD_ADDR (Bluetooth Device Address)
03:IO_Capability to 0x03 (NoInputNoOutput). This means that the PIC does not have a display or a button that allows you to enter YesNo. This is the Just Works method.
00:OOB_Data_Presentthe 0x00 means that OOB will not be used.
00:Authentication_Requirements that this is 0x00 that mitm defense is not necessary.
Compare with (2).
(7) I/O capability response at the LMP level (PIC
dongle to PC dongle) It is an I/O capability response at the LMP (Link Manager protocol) level, and is not involved in firmware, so the description is omitted.
(8) I/O capability
response event (PC dongle to PC) 32 09 4D E0 03 DC 1B 00 03 00 00
32: IO Capability Response Event
09: Below The number of subsequent data is the same as the last 3 bytes of the 9-byte
4D E0 03 DC 1B
00 :P IC dongle BD_ADDR 03 00 00:(6), and the meaning is the same.
Compare with (4).

Step 6: Public Key Exchange
The step of exchanging public keys. However, since it is only work between PIC dongle and PC dongle, it is not necessary to understand when developing firmware(there is nothing to do with both PIC and PC).

Step 7a: Numeric Comparison
[image: http://www.yts.rdy.jp/pic/GB002/ssp6.jpg]
This is what it does with the Just Works method. First, exchange the PIN key between the PC dongle and the PIC dongle.
(1) User Confirmation Request
Event (PC) 33 0A 4D E0 03 DC 1B 00 F8 FA 08 00
33: User Confirmation Request Event
0A
: The following number of data is 10
bytes 4D E0 03 DC 1B 00:P IC dongle BD_ADDR F8 FA 08 00:P IN key (number to check)
(2) User Confirmation Response
(PC) 2C 04 06 4D E0 03 DC 1B 00
2C 04: User Confirmation Request Reply Command
06 : The number of data following 6
bytes 4D E0 03 DC 1B 00:P IC Dongle BD_ADDR
(3) User Confirmation Request
Event (PIC) 33 0A 0A 6F FE 33 24 00 F8 FA 08 00
33: User Confirmation Request Event
0A:Number of data following 10
bytes 0A 6F FE 33 24 00:P C dongle BD_ADDR
F8 FA 08 00:P IN key (number to check) (1) will check the same number.
(4) User Confirmation Response
(PIC) 2C 04 06 0A 6F FE 33 24 00
2C 04
: User Confirmation Request Reply Command 06: 6
bytes of data following 0A 6F FE 33 24 00:P C dongle BD_ADDR

Step 8: DHKey Checks
It is a step to check the key that becomes DHKey (Diffie-Hellman Key), but I do not understand it. Simply work between the PIC dongle and the PC dongle, and when the check is complete, the Simple Pairing Complete Event will notify the PIC or PC.
(1) Simple Paring Completion Event
(PC) 36 07 00 4D E0 03 DC 1B 00
36: Simple Pairing Complete Event
07: The numberof data following is
7 bytes 00: 00in status means successful pairing.
4D E0 03 DC 1B 00:P IC Dongle BD_ADDR
(2) Simple Paring Completion Event
(PIC) 36 07 00 0A 6F FE 33 24 00

36: Simple Pairing Complete Event 07: The numberof data following is
7 bytes 00: 00in status means successful pairing.
0A 6F FE 33 24 00:P C Dongle BD_ADDR

Step 9: Calculator Link Key
The link key required for reconnection is calculated and notified to the PIC or PC as the Link key Notification Event.
(4) Link key notification
event (PC) 18 17 4D E0 03 DC 1B 00 CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF 04
18:Link Key
Notification Event 1 7:23 bytes of data following
23 bytes 4D E0 03 DC 1B 00:P IC dongle BD_ADDR
CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF:
Link key 04 key type 04 is Unauthenticed Communication Key, but I don't understand it.
(4) Link key
notification event (PIC) 18 17 0A 6F FE 33 24 00 CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF 04
18:Link Key Notification Event
18 17:23
bytes 0A 6F FE 33 24 00:P C dongle BD_ADDR
CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF:
Link key 04 key type 04 is Unauthenticed Communication Key, but I don't understand it.

Step 10: Enable Encryption
[image: http://www.yts.rdy.jp/pic/GB002/ssp7.jpg]
(1) Authentication
completion event 06 03 00 2B 00
06
: Authentication Complete Event 03: The numberof data following is
3 bytes 00: 00in status means authentication success.
2B 00:Connection Handle (PC)
(2) Encrypted
connection settings 13 04 03 2B 00
01 13 04: Set Connection
Encryption Command 03: 3
bytes of data following 2B 00: Connection Handle (PC)
01:01means that encryption at the link level is possible
(3) Cryptographic configuration change
event (PC) 08 04 00 2B 00 01
08: Encryption Change Event

04: The number ofdata following is 4 bytes 00: 00in status means successful cryptographic change (encryption is now possible).
2B 00Connection Handle (PC)
01:01means that it allows encryption at the link level.
(4) Cryptographic configuration change event
(PIC) 08 04 00 2A 00 01
08: Encryption Change Event
04: The number ofdata following is
4 bytes 00: 00in status means successful cryptographic change (cipher enabled).
2A 00Connection Handle (PIC)
01:01means that it allows encryption at the link level.

Reconnect
Sttep 1: Authentication Requested
Note: When reconnecting, the host and master roles are reversed from the first connection on the PC and PIC.
[image: http://www.yts.rdy.jp/pic/GB002/ssp8.jpg]
(1) Authentication request instruction (issued to
PIC dongle) 11 04 02 2A 00
11 04:Opcode instruction is 11, opcode
group is 01, Authentication Request command 02: Numberof data following
2 bytes 2A 00: Connection Handle (PIC)
(2) Link key request event (returned
to PIC) 17 06 0A 6F FE 33 24 00
17:Link Key Request Event
06: Thenumber of data following is 6
bytes 0A 6F FE 33 24 00:P C dongle BD_ADDR
(3) Link key response
(PIC) 0B 04 16 0A 6F FE 33 24 00 CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF
0B 04:Link Key Request Reply Command
d 16:
22 bytes 0A 6F FE 33 24 00:P C dongle BD_ADDR
CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF Link key obtained during first connection
(4) Link key request event (returned
to PC) 17 06 4D E0 03 DC 1B 00
17:Link Key Request Event
06: Thenumber of data following is 6
bytes 4D E0 03 DC 1B 00:P IC dongle BD_ADDR
(5) Link key response
(PC) 0B 04 16 4D E0 03 DC 1B 00 CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF
0B 04:Link Key Request Reply Command
d 16:
22 bytes of data following 22 bytes 4D E0 03 DC 1B 00:P IC
dongle BD_ADDR CB 34 A6 D7 64 53 9D 39 B9 D2 17 66 28 83 0A AF Link key obtained during initial connection
(6) Authentication Completion Event
(PIC) 06 03 00 2A 00
06
: Authentication Complete Event 03: The number ofdata following is
3 bytes 00: 00in status means authentication success.
2A 00:：Connection Handle (PIC)

Suttep 2: Set Connection Encryption
[image: http://www.yts.rdy.jp/pic/GB002/ssp9.jpg]
(1) Encrypted connection
settings (PIC) 13 04 03 2A 00 0
13 04: Set Connection
Encryption Command 03: Thefollowing data number is 3
bytes 2A 00: Connection Handle (PIC)
01:01means that encryption at the link level is possible.
(2) Cryptographic configuration change
event (PC) 08 04 00 2B 00 01
08: Encryption Change Event

04: The number ofdata following is 4 bytes 00: 00in status means successful cryptographic change (cipher enabled).
2B 00:ConnectionHandle (PC)
01:01means link-level cryptography.
(3) Cryptographic configuration change event
(PIC) 08 04 00 2A 00 01
08: Encryption Change Event
04: Thenumber of data following is
4 bytes 00: 00in status means successful cryptographic change (cipher enabled).
2A 00:Connection Handle (PIC)
01:01means that it allows encryption at the link level.

return

	

Protocols and profiles
[image: http://www.yts.rdy.jp/pic/GB002/layer.jpg]The figure on the right shows a simple illustration of the Bluetooth protocol layer. There is no Bluetooth-HID profile anywhere. Because bluetooth protocol itself is not. For example, consider two Bluetooth devices, one of which realizes HID on the HCI protocol and the other on L2CAP. The former does not understand L2CAP, so these two devices are not connected. This means that even if they are the same at the HID level, if the lower protocol levels are different from each other, they will not be able to communicate. Therefore, when realizing a high level of communication services like HID, the type of protocol used and the procedure of how to use them are standardized. This standardized procedure is called a profile. In terms of the protocol used, the Bluetooth-HID profile uses (1), (2) and (3) in the right figure. Also, for SPP (Serial Port Profile), use (1), (2), (3), and (4).
One of the roles of the protocol is to determine the structural format (format) of the data packets used for Bluetooth. Because profiles are not protocols, they do not set the structural format of data packets.
For more information on the structure of data packets, let's review, for example, the L2CAP (Protocol) Channel Security chapter.
Now, the HCI ACL

data packet (Connection Handle+PB Flag+BC Flag),ACL data length,and ACL

data column formats arewritten in the HCI Protocol chapter. HCI is the protocol that decides to use this kind of data packet structure format.
Also, the L2CAP data packet is an HCI ACL data packet, but

the ACL data column in it is more structured, and i) for the first packet to be sent (PB
Flag=10), the ACL data column =
L2CAP total data length, channel ID, L2CAP
data column ii) for the split no. 2 or later packet (PB Flag=01) has an ACL data column = L2CAP

data column structure. The protocol called L2CAP is the one that decides the structure format of such L2CAP data columns.
As you can see, L2CAP (protocol) further structures the structure of data packets (HCI ACL data packets) as decided by the HCI protocol. It defines the structure again in the structure. Schematically, we think that the HCI protocol is lower and the L2CAP (protocol) is on top of it. If you look at the image above, you can see that it is such a figure. Now, if you look at the SDP (protocol) and RFCOMM protocol in the figure, you are on top of the L2CAP (protocol). This means that the SDP (protocol) and RFCOMM protocols further structure the contents of L2CAP data packets (L2CAP data columns).

return
34

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

