Audio Library Interfering with Servo Library

Status
Not open for further replies.

clinzy

New member
I am trying to put together a project that makes use of the Audio library for reading the frequency of a note from a microphone input and also makes use of the Servo library for controlling a set of Servos. I have found unfortunately that merely initializing an AudioInputAnalog object causes the servos to stop responding. To demonstrate this I have put together a simple sketch based on the Servo sweep example below. If one comments out the "audio stuff" the servos will sweep but with the audio stuff active they are dead as door nails. I am running on a Teensy 3.2. Thank you in advance for your help.

Code:
#include <Servo.h> 
#define MIN_PULSE      1300.0     // the shortest pulse sent to a servo  
#define MAX_PULSE      1700.0     // the longest pulse sent to a servo 
#define DELAY_TIME 2000

// Begin Audio Stuff
#include <Audio.h>
#include <Wire.h>
AudioInputAnalog         micADC(A0);           //xy=135,193
AudioAnalyzeNoteFrequency inputNote;      //xy=423,192
AudioConnection          patchCord1(micADC, inputNote);
// End Audio Stuff

Servo servo1;
Servo servo2;
Servo servo3;

// create servo object to control a servo 
                // a maximum of eight servo objects can be created 
 
int pos = 0;    // variable to store the servo position 

void setup() 
{   
  servo1.attach(5,MIN_PULSE,MAX_PULSE);  // attaches the servo on pin 9 to the servo object
  servo2.attach(6,MIN_PULSE,MAX_PULSE);  // attaches the servo on pin 9 to the servo object
  servo3.attach(9,MIN_PULSE,MAX_PULSE);  // attaches the servo on pin 9 to the servo object

  Serial.begin(9600);
} 
 
 
void loop() 
{ 
  moveA(MIN_PULSE);
  delay(DELAY_TIME);
  moveA(MAX_PULSE);
  delay(DELAY_TIME);

}
void moveA(int pos)
{

  servo1.writeMicroseconds(pos);              // tell servo to go to position in variable 'pos' 
  servo2.writeMicroseconds(pos);
  servo3.writeMicroseconds(pos); 
  Serial.println(pos);  
}
 
Both are using the PDB timer.

If you look at Servo.cpp, there's 3 full implementations, 1 using AVR timers, 1 using PDB, and 1 using the low power timer (in Teensy LC).

Teensy 3.2 also has the low power timer, so if you edit the file to use the LPTRM code, it should work. I believe FreqCount and Entropy are the only other libs currently using LPTMR.
 
Could someone give me a little more info on how to do this? I found the servo.cpp.o file, but can I edit this directly (I haven't been able to open it)? Or does someone have an edited version that I could use? Or is there another servo library that would be better to use? Thanks very much!
 
I have not tried it, but here are the steps I would try if I were doing this.

Get your favorite text editor to edit the servo library:
Teensyduino installs the sources at: <your Arduino installation>/hardware/teensy/avr/libraries/Servo

Edit Servo.cpp:
At about line 343 (current release) you will see:
Code:
#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__))
Remove the case for T3.2 from this (I will in this example remove the T3.0 one as well)
Code:
#elif defined(__arm__) && (defined(__MK64FX512__) || defined(__MK66FX1M0__))
Then about line 513 which handles the Teensy LC maybe change the line that looks like:
Code:
#elif defined(__arm__) && defined(__MKL26Z64__)
to also process the T3.2
Code:
#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__))

Save the file away and then try building your app. Again I have not tried it, but...
 
Okay, thanks! Part of question is that I don't seem to have servo.cpp, but rather two files, servo.cpp.d and servo.cpp.o, neither of which I can edit. Any thoughts on these?
 
Last edited:
I made the changes, but it won't compile-- I'm getting multiple errors like the following. My apologies for my ineptitude ;)


C:\Users\Andrew\AppData\Local\Temp\build3574eda1fe848535444f8a542a9570a9.tmp\libraries\Servo\Servo.cpp.o: In function `Servo::attach(int)':

C:\Program Files (x86)\Arduino\hardware\teensy\avr\libraries\Servo/Servo.cpp:539: multiple definition of `Servo::Servo()'

C:\Users\Andrew\AppData\Local\Temp\build3574eda1fe848535444f8a542a9570a9.tmp\libraries\Servo\Servo - original version.cpp.o:C:\Program Files (x86)\Arduino\hardware\teensy\avr\libraries\Servo/Servo - original version.cpp:371: first defined here

c:/program files (x86)/arduino/hardware/tools/arm/bin/../lib/gcc/arm-none-eabi/4.8.4/../../../../arm-none-eabi/bin/ld.exe: Disabling relaxation: it will not work with multiple definitions
 
First, restore your copy of Servo. Run the Teensyduino installer again if needed.

To make this edit, you need to change 2 places in Servo.cpp.

First, find this:

Code:
#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__))
// ******************************************************************************
// Teensy 3.0 implementation, using Programmable Delay Block
// ******************************************************************************

You want to avoid using the PDB, so change it to this:

Code:
#elif 0
// ******************************************************************************
// Teensy 3.0 implementation, using Programmable Delay Block
// ******************************************************************************

Then find this:

Code:
#elif defined(__arm__) && defined(__MKL26Z64__)
// ******************************************************************************
// Teensy-LC implementation, using Low Power Timer
// ******************************************************************************

You do want to use LPTRM, so change it to this:

Code:
#elif 1
// ******************************************************************************
// Teensy-LC implementation, using Low Power Timer
// ******************************************************************************

That's it. Do not edit any actual C++ code. Just start with the original Servo.cpp and chance these #elif lines.
 
Thank you Paul-- I did that and I still seem to get compile errors like the ones above and these below. Would I need to delete some temp files, or...?:

Invalid library found in C:\Users\Andrew\Documents\Arduino\libraries\OLD_LIBRARIES: C:\Users\Andrew\Documents\Arduino\libraries\OLD_LIBRARIES
C:\Users\Andrew\AppData\Local\Temp\build3574eda1fe848535444f8a542a9570a9.tmp\libraries\Servo\Servo.cpp.o: In function `Servo::attach(int)':

C:\Program Files (x86)\Arduino\hardware\teensy\avr\libraries\Servo/Servo.cpp:539: multiple definition of `Servo::Servo()'

C:\Users\Andrew\AppData\Local\Temp\build3574eda1fe848535444f8a542a9570a9.tmp\libraries\Servo\Servo - original version.cpp.o:C:\Program Files (x86)\Arduino\hardware\teensy\avr\libraries\Servo/Servo - original version.cpp:371: first defined here

c:/program files (x86)/arduino/hardware/tools/arm/bin/../lib/gcc/arm-none-eabi/4.8.4/../../../../arm-none-eabi/bin/ld.exe: Disabling relaxation: it will not work with multiple definitions
 
FYI - I made the exact edits I mentioned in the earlier post and loaded the example sketch sweep and it compiled fine.

Here is the Servo.cpp file:
Code:
/*
 Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
 Copyright (c) 2009 Michael Margolis.  All right reserved.
 
 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.
 
 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Lesser General Public License for more details.
 
 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

/* 
 
 A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
 The servos are pulsed in the background using the value most recently written using the write() method
 
 Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
 Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
 
 The methods are:
 
 Servo - Class for manipulating servo motors connected to Arduino pins.
 
 attach(pin )  - Attaches a servo motor to an i/o pin.
 attach(pin, min, max  ) - Attaches to a pin setting min and max values in microseconds
 default min is 544, max is 2400  
 
 write()     - Sets the servo angle in degrees.  (invalid angle that is valid as pulse in microseconds is treated as microseconds)
 writeMicroseconds() - Sets the servo pulse width in microseconds 
 read()      - Gets the last written servo pulse width as an angle between 0 and 180. 
 readMicroseconds()   - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
 attached()  - Returns true if there is a servo attached. 
 detach()    - Stops an attached servos from pulsing its i/o pin. 
 
*/

#if defined(__AVR__)

#include <avr/interrupt.h>
#include <Arduino.h> 

#include "Servo.h"

#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds


#define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER)

static servo_t servos[MAX_SERVOS];                          // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)

uint8_t ServoCount = 0;                                     // the total number of attached servos


// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER)       // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + _channel)     // macro to access servo index by timer and channel
#define SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // macro to access servo class by timer and channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in uS for this servo 

/************ static functions common to all instances ***********************/

static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
  if( Channel[timer] < 0 )
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer 
  else{
    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )  
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated   
  }

  Channel[timer]++;    // increment to the next channel
  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if activated
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high   
  }  
  else { 
    // finished all channels so wait for the refresh period to expire before starting over 
    if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) )  // allow a few ticks to ensure the next OCR1A not missed
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);  
    else 
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
  }
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino 
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect) 
{ 
  handle_interrupts(_timer1, &TCNT1, &OCR1A); 
}
#endif

#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect) 
{ 
  handle_interrupts(_timer3, &TCNT3, &OCR3A); 
}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect) 
{
  handle_interrupts(_timer4, &TCNT4, &OCR4A); 
}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect) 
{
  handle_interrupts(_timer5, &TCNT5, &OCR5A); 
}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring 
#if defined(_useTimer1)
void Timer1Service() 
{ 
  handle_interrupts(_timer1, &TCNT1, &OCR1A); 
}
#endif
#if defined(_useTimer3)
void Timer3Service() 
{ 
  handle_interrupts(_timer3, &TCNT3, &OCR3A); 
}
#endif
#endif


static void initISR(timer16_Sequence_t timer)
{  
#if defined (_useTimer1)
  if(timer == _timer1) {
    TCCR1A = 0;             // normal counting mode 
    TCCR1B = _BV(CS11);     // set prescaler of 8 
    TCNT1 = 0;              // clear the timer count 
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF1A);      // clear any pending interrupts; 
    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt  
#else
    // here if not ATmega8 or ATmega128
    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts; 
    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt 
#endif    
#if defined(WIRING)       
    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); 
#endif	
  } 
#endif  

#if defined (_useTimer3)
  if(timer == _timer3) {
    TCCR3A = 0;             // normal counting mode 
    TCCR3B = _BV(CS31);     // set prescaler of 8  
    TCNT3 = 0;              // clear the timer count 
#if defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF3A);     // clear any pending interrupts;   
	ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt     
#else  
    TIFR3 = _BV(OCF3A);     // clear any pending interrupts; 
    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt      
#endif
#if defined(WIRING)    
    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only	
#endif  
  }
#endif

#if defined (_useTimer4)
  if(timer == _timer4) {
    TCCR4A = 0;             // normal counting mode 
    TCCR4B = _BV(CS41);     // set prescaler of 8  
    TCNT4 = 0;              // clear the timer count 
    TIFR4 = _BV(OCF4A);     // clear any pending interrupts; 
    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt
  }    
#endif

#if defined (_useTimer5)
  if(timer == _timer5) {
    TCCR5A = 0;             // normal counting mode 
    TCCR5B = _BV(CS51);     // set prescaler of 8  
    TCNT5 = 0;              // clear the timer count 
    TIFR5 = _BV(OCF5A);     // clear any pending interrupts; 
    TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt      
  }
#endif
} 

static void finISR(timer16_Sequence_t timer)
{
    //disable use of the given timer
#if defined WIRING   // Wiring
  if(timer == _timer1) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #else 
    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt   
    #endif
    timerDetach(TIMER1OUTCOMPAREA_INT); 
  }
  else if(timer == _timer3) {     
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #else
    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #endif
    timerDetach(TIMER3OUTCOMPAREA_INT);
  }
#else
    //For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)
{
  // returns true if any servo is active on this timer
  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
    if(SERVO(timer,channel).Pin.isActive == true)
      return true;
  }
  return false;
}


/****************** end of static functions ******************************/

Servo::Servo()
{
  if( ServoCount < MAX_SERVOS) {
    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
	servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
  }
  else
    this->servoIndex = INVALID_SERVO ;  // too many servos 
}

uint8_t Servo::attach(int pin)
{
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int min, int max)
{
  if(this->servoIndex < MAX_SERVOS ) {
    pinMode( pin, OUTPUT) ;                                   // set servo pin to output
    servos[this->servoIndex].Pin.nbr = pin;  
    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 
    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
    this->max  = (MAX_PULSE_WIDTH - max)/4; 
    // initialize the timer if it has not already been initialized 
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
    if(isTimerActive(timer) == false)
      initISR(timer);    
    servos[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
  } 
  return this->servoIndex ;
}

void Servo::detach()  
{
  servos[this->servoIndex].Pin.isActive = false;  
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
  if(isTimerActive(timer) == false) {
    finISR(timer);
  }
}

void Servo::write(int value)
{  
  if(value < MIN_PULSE_WIDTH)
  {  // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
    if(value < 0) value = 0;
    if(value > 180) value = 180;
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());      
  }
  this->writeMicroseconds(value);
}

void Servo::writeMicroseconds(int value)
{
  // calculate and store the values for the given channel
  byte channel = this->servoIndex;
  if( (channel < MAX_SERVOS) )   // ensure channel is valid
  {  
    if( value < SERVO_MIN() )          // ensure pulse width is valid
      value = SERVO_MIN();
    else if( value > SERVO_MAX() )
      value = SERVO_MAX();   
    
  	value = value - TRIM_DURATION;
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

    uint8_t oldSREG = SREG;
    cli();
    servos[channel].ticks = value;  
    SREG = oldSREG;   
  } 
}

int Servo::read() // return the value as degrees
{
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);     
}

int Servo::readMicroseconds()
{
  unsigned int pulsewidth;
  if( this->servoIndex != INVALID_SERVO )
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;   // 12 aug 2009
  else 
    pulsewidth  = 0;

  return pulsewidth;   
}

bool Servo::attached()
{
  return servos[this->servoIndex].Pin.isActive ;
}



#elif defined(__arm__) && (defined(__MK64FX512__) || defined(__MK66FX1M0__))
// ******************************************************************************
// Teensy 3.0 implementation, using Programmable Delay Block
// ******************************************************************************

#include <Arduino.h> 
#include "Servo.h"

#define PDB_CONFIG (PDB_SC_TRGSEL(15) | PDB_SC_PDBEN | PDB_SC_PDBIE \
	| PDB_SC_CONT | PDB_SC_PRESCALER(2) | PDB_SC_MULT(0))
#define PDB_PRESCALE 4 // 
#define usToTicks(us)    ((us) * (F_BUS / 1000) / PDB_PRESCALE / 1000)
#define ticksToUs(ticks) ((ticks) * PDB_PRESCALE * 1000 / (F_BUS / 1000))

#if SERVOS_PER_TIMER <= 16
static uint16_t servo_active_mask = 0;
static uint16_t servo_allocated_mask = 0;
#else
static uint32_t servo_active_mask = 0;
static uint32_t servo_allocated_mask = 0;
#endif
static uint8_t servo_pin[MAX_SERVOS];
static uint16_t servo_ticks[MAX_SERVOS];

Servo::Servo()
{
	uint16_t mask;

	servoIndex = 0;
	for (mask=1; mask < (1<<MAX_SERVOS); mask <<= 1) {
		if (!(servo_allocated_mask & mask)) {
			servo_allocated_mask |= mask;
			servo_active_mask &= ~mask;
			return;
		}
		servoIndex++;
	}
	servoIndex = INVALID_SERVO;
}

uint8_t Servo::attach(int pin)
{
	return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int minimum, int maximum)
{
	if (servoIndex < MAX_SERVOS) {
		pinMode(pin, OUTPUT);
		servo_pin[servoIndex] = pin;
		servo_ticks[servoIndex] = usToTicks(DEFAULT_PULSE_WIDTH);
		servo_active_mask |= (1<<servoIndex);
		min_ticks = usToTicks(minimum);
		max_ticks = usToTicks(maximum);
		if (!(SIM_SCGC6 & SIM_SCGC6_PDB)) {
			SIM_SCGC6 |= SIM_SCGC6_PDB; // TODO: use bitband for atomic bitset
			PDB0_MOD = 0xFFFF;
			PDB0_CNT = 0;
			PDB0_IDLY = 0;
			PDB0_SC = PDB_CONFIG;
			// TODO: maybe this should be a higher priority than most
			// other interrupts (init all to some default?)
			PDB0_SC = PDB_CONFIG | PDB_SC_SWTRIG;
			NVIC_SET_PRIORITY(IRQ_PDB, 32);
		}
		NVIC_ENABLE_IRQ(IRQ_PDB);
	}
	return servoIndex;
}

void Servo::detach()  
{
	if (servoIndex >= MAX_SERVOS) return;
	servo_active_mask &= ~(1<<servoIndex);
	servo_allocated_mask &= ~(1<<servoIndex);
	if (servo_active_mask == 0) {
		NVIC_DISABLE_IRQ(IRQ_PDB);
	}
}

void Servo::write(int value)
{
	if (servoIndex >= MAX_SERVOS) return;
	if (value >= MIN_PULSE_WIDTH) {
		writeMicroseconds(value);
		return;
	} else if (value > 180) {
		value = 180;
	} else if (value < 0) {
		value = 0;
	}
	if (servoIndex >= MAX_SERVOS) return;
	servo_ticks[servoIndex] = map(value, 0, 180, min_ticks, max_ticks);
}

void Servo::writeMicroseconds(int value)
{
	value = usToTicks(value);
	if (value < min_ticks) {
		value = min_ticks;
	} else if (value > max_ticks) {
		value = max_ticks;
	}
	if (servoIndex >= MAX_SERVOS) return;
	servo_ticks[servoIndex] = value;
}

int Servo::read() // return the value as degrees
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return map(servo_ticks[servoIndex], min_ticks, max_ticks, 0, 180);     
}

int Servo::readMicroseconds()
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return ticksToUs(servo_ticks[servoIndex]);
}

bool Servo::attached()
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return servo_active_mask & (1<<servoIndex);
}

extern "C" void pdb_isr(void)
{
	static int8_t channel=0, channel_high=MAX_SERVOS;
	static uint32_t tick_accum=0;
	uint32_t ticks;
	int32_t wait_ticks;

	// first, if any channel was left high from the previous
	// run, now is the time to shut it off
	if (servo_active_mask & (1<<channel_high)) {
		digitalWrite(servo_pin[channel_high], LOW);
		channel_high = MAX_SERVOS;
	}
	// search for the next channel to turn on
	while (channel < MAX_SERVOS) {
		if (servo_active_mask & (1<<channel)) {
			digitalWrite(servo_pin[channel], HIGH);
			channel_high = channel;
			ticks = servo_ticks[channel];
			tick_accum += ticks;
			PDB0_IDLY += ticks;
			PDB0_SC = PDB_CONFIG | PDB_SC_LDOK;
			channel++;
			return;
		}
		channel++;
	}
	// when all channels have output, wait for the
	// minimum refresh interval
	wait_ticks = usToTicks(REFRESH_INTERVAL) - tick_accum;
	if (wait_ticks < usToTicks(100)) wait_ticks = usToTicks(100);
	else if (wait_ticks > 60000) wait_ticks = 60000;
	tick_accum += wait_ticks;
	PDB0_IDLY += wait_ticks;
	PDB0_SC = PDB_CONFIG | PDB_SC_LDOK;
	// if this wait is enough to satisfy the refresh
	// interval, next time begin again at channel zero 
	if (tick_accum >= usToTicks(REFRESH_INTERVAL)) {
		tick_accum = 0;
		channel = 0;
	}
}



#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__))
// ******************************************************************************
// Teensy-LC implementation, using Low Power Timer
// ******************************************************************************

#include <Arduino.h> 
#include "Servo.h"

#define LPTMR_CONFIG     LPTMR_CSR_TIE | LPTMR_CSR_TFC | LPTMR_CSR_TEN
#define usToTicks(us)    ((us) * 8)
#define ticksToUs(ticks) ((ticks) / 8)

#if SERVOS_PER_TIMER <= 16
static uint16_t servo_active_mask = 0;
static uint16_t servo_allocated_mask = 0;
#else
static uint32_t servo_active_mask = 0;
static uint32_t servo_allocated_mask = 0;
#endif
static uint8_t servo_pin[MAX_SERVOS];
static uint16_t servo_ticks[MAX_SERVOS];

Servo::Servo()
{
	uint16_t mask;

	servoIndex = 0;
	for (mask=1; mask < (1<<MAX_SERVOS); mask <<= 1) {
		if (!(servo_allocated_mask & mask)) {
			servo_allocated_mask |= mask;
			servo_active_mask &= ~mask;
			return;
		}
		servoIndex++;
	}
	servoIndex = INVALID_SERVO;
}

uint8_t Servo::attach(int pin)
{
	return attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int minimum, int maximum)
{
	if (servoIndex < MAX_SERVOS) {
		pinMode(pin, OUTPUT);
		servo_pin[servoIndex] = pin;
		servo_ticks[servoIndex] = usToTicks(DEFAULT_PULSE_WIDTH);
		servo_active_mask |= (1<<servoIndex);
		min_ticks = usToTicks(minimum);
		max_ticks = usToTicks(maximum);
		if (!(SIM_SCGC5 & SIM_SCGC5_LPTIMER)) {
			SIM_SCGC5 |= SIM_SCGC5_LPTIMER; // TODO: use BME
			OSC0_CR |= OSC_ERCLKEN;
			LPTMR0_CSR = 0;
			LPTMR0_PSR = LPTMR_PSR_PRESCALE(0) | LPTMR_PSR_PCS(3); // 8 MHz
			LPTMR0_CMR = 1;
			LPTMR0_CSR = LPTMR_CONFIG;
			NVIC_SET_PRIORITY(IRQ_LPTMR, 32);
		}
		NVIC_ENABLE_IRQ(IRQ_LPTMR);
	}
	return servoIndex;
}

void Servo::detach()  
{
	if (servoIndex >= MAX_SERVOS) return;
	servo_active_mask &= ~(1<<servoIndex);
	servo_allocated_mask &= ~(1<<servoIndex);
	if (servo_active_mask == 0) {
		NVIC_DISABLE_IRQ(IRQ_LPTMR);
	}
}

void Servo::write(int value)
{
	if (servoIndex >= MAX_SERVOS) return;
	if (value >= MIN_PULSE_WIDTH) {
		writeMicroseconds(value);
		return;
	} else if (value > 180) {
		value = 180;
	} else if (value < 0) {
		value = 0;
	}
	if (servoIndex >= MAX_SERVOS) return;
	servo_ticks[servoIndex] = map(value, 0, 180, min_ticks, max_ticks);
}

void Servo::writeMicroseconds(int value)
{
	value = usToTicks(value);
	if (value < min_ticks) {
		value = min_ticks;
	} else if (value > max_ticks) {
		value = max_ticks;
	}
	if (servoIndex >= MAX_SERVOS) return;
	servo_ticks[servoIndex] = value;
}

int Servo::read() // return the value as degrees
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return map(servo_ticks[servoIndex], min_ticks, max_ticks, 0, 180);     
}

int Servo::readMicroseconds()
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return ticksToUs(servo_ticks[servoIndex]);
}

bool Servo::attached()
{
	if (servoIndex >= MAX_SERVOS) return 0;
	return servo_active_mask & (1<<servoIndex);
}

void lptmr_isr(void)
{
	static int8_t channel=0, channel_high=MAX_SERVOS;
	static uint32_t tick_accum=0;
	uint32_t ticks;
	int32_t wait_ticks;

	// first, if any channel was left high from the previous
	// run, now is the time to shut it off
	if (servo_active_mask & (1<<channel_high)) {
		digitalWrite(servo_pin[channel_high], LOW);
		channel_high = MAX_SERVOS;
	}
	// search for the next channel to turn on
	while (channel < MAX_SERVOS) {
		if (servo_active_mask & (1<<channel)) {
			digitalWrite(servo_pin[channel], HIGH);
			channel_high = channel;
			ticks = servo_ticks[channel];
			tick_accum += ticks;
			LPTMR0_CMR += ticks;
			LPTMR0_CSR = LPTMR_CONFIG | LPTMR_CSR_TCF;
			channel++;
			return;
		}
		channel++;
	}
	// when all channels have output, wait for the
	// minimum refresh interval
	wait_ticks = usToTicks(REFRESH_INTERVAL) - tick_accum;
	if (wait_ticks < usToTicks(100)) wait_ticks = usToTicks(100);
	else if (wait_ticks > 60000) wait_ticks = 60000;
	tick_accum += wait_ticks;
	LPTMR0_CMR += wait_ticks;
	LPTMR0_CSR = LPTMR_CONFIG | LPTMR_CSR_TCF;
	// if this wait is enough to satisfy the refresh
	// interval, next time begin again at channel zero 
	if (tick_accum >= usToTicks(REFRESH_INTERVAL)) {
		tick_accum = 0;
		channel = 0;
	}
}






#endif
So if this version does not work for you, then follow the rule mentioned at the top of each page and provide the sources for a sketch that fails to compile.

Kurt
 
Okay, I figured out what I did wrong-- I made a copy of the original cpp file and renamed it but left it in the same folder. I didn't realize it couldn't be in there. It compiles fine now. I haven't had a chance to upload it yet, but I will later. Many thanks again for your help!
 
Okay, the library is working fine. One more quick question, if I may-- is it normal for servos to inject noise into the ADC? I'm working on a model train controller where we want to send sound from the ADC, but the servos are creating a lot of noise. We could try using the SPI or a separate board for the sound if necessary. Thanks again!
 
is it normal for servos to inject noise into the ADC?

In general, all high-power devices and especially those using PWM or other pulsed power control (as those servo motors almost certainly do) tend to interfere with sensitive analog signals.

The first and usually most important step is dedicated wiring for all your analog stuff. Never share ground wires between sensitive analog circuits and other stuff using lots of power. Teensy has a dedicated AGND pin meant for connecting all your analog grounds.

Sometimes you will also need to provide a separate power supply for motors or other heavy loads. Keep the wires short and direct to the power supply. In other words, run the motor's power and ground right to the supply. If Teensy runs from the same supply, run a separate ground wires from Teensy to that supply, but *not* over to the motor. If they're powered separately, connect the power supply grounds together, between the supplies (but between Teensy and the motor, because that risks the motor's heavy current flowing through your analog stuff).

This is a very common problem with all electronic projects when PWM controlled motors or lights or other loads are used together with sensitive analog signals. A key term for searching is "ground loop"....
 
Great, thanks Paul! I should have played around some more before asking the question ;) It's just breadboarded right now, but I ran AGND on one side of the board and GND on the other, and the noise level is much better now. Thanks again for your help.
 
Status
Not open for further replies.
Back
Top