When verifying "Sample Player1.ino" (source below) using Arduino 1.8.9 I get the following error when Teensy Loader 1.4.6 begins loading:
--------------------------------Arduino IDE Command Output Display-------------------------------------------------------------------------------
/home/dwayne/arduino-1.8.9/hardware/teensy/avr/libraries/Audio/output_tdm.cpp: In static member function 'static void AudioOutputTDM::isr()':
/home/dwayne/arduino-1.8.9/hardware/teensy/avr/libraries/Audio/output_tdm.cpp:128:19: warning: variable 'dc' set but not used [-Wunused-but-set-variable]
uint32_t *dest, *dc;
^
---------------------------------------------End-------------------------------------------------------------------------------------------------------------
On reviewing output_tdm.cpp (source below) function 'static void AudioOutputTDM' it seems the braces are not correct for the if statement. I am no C++ expert, so I do not know if this is what is causing this error. The "SamplePlayer1.ino" compiled, and loaded successfully in the Teensy 3.2 card, but I do not know if it will work.
I am running Ubuntu 18.04.2. Any help on this would be appreciated, first time programming a Teensy.
Dwayne
-------------------Source Code-------------------------------------------------------
+++++++++++++++++++++++++++++++++++++++SamplePlayer1.ino+++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++]+++++output_tdm.cpp+++++++++++++++++++++++++++++++++++++++++
--------------------------------Arduino IDE Command Output Display-------------------------------------------------------------------------------
/home/dwayne/arduino-1.8.9/hardware/teensy/avr/libraries/Audio/output_tdm.cpp: In static member function 'static void AudioOutputTDM::isr()':
/home/dwayne/arduino-1.8.9/hardware/teensy/avr/libraries/Audio/output_tdm.cpp:128:19: warning: variable 'dc' set but not used [-Wunused-but-set-variable]
uint32_t *dest, *dc;
^
---------------------------------------------End-------------------------------------------------------------------------------------------------------------
On reviewing output_tdm.cpp (source below) function 'static void AudioOutputTDM' it seems the braces are not correct for the if statement. I am no C++ expert, so I do not know if this is what is causing this error. The "SamplePlayer1.ino" compiled, and loaded successfully in the Teensy 3.2 card, but I do not know if it will work.
I am running Ubuntu 18.04.2. Any help on this would be appreciated, first time programming a Teensy.
Dwayne
-------------------Source Code-------------------------------------------------------
+++++++++++++++++++++++++++++++++++++++SamplePlayer1.ino+++++++++++++++++++++++++++++++++++++++
Code:
// WAV files converted to code by wav2sketch
#include "AudioSampleSnare.h"
#include "AudioSampleTomtom.h"
#include "AudioSampleHihat.h"
#include "AudioSampleKick.h"
#include "AudioSamplePianoff.h"
#include "AudioSampleClap.h"
#include "AudioSampleCleanbass.h"
#include "AudioSampleDub.h"
#include "AudioSampleDrum1.h"
#include "AudioSampleFf04.h"
#include "AudioSampleFf20.h"
#include "AudioSampleFf33.h"
#include "AudioSampleFf57.h"
#include "AudioSampleFf63.h"
// Create the Audio components. These should be created in the
// order data flows, inputs/sources -> processing -> outputs
//
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>
#include <Bounce.h>
// GUItool: begin automatically generated code
AudioControlSGTL5000 sgtl5000_1;
AudioPlayMemory sound0;
AudioPlayMemory sound1; // six memory players, so we can play
AudioPlayMemory sound2; // all six sounds simultaneously
AudioPlayMemory sound3;
AudioPlayMemory sound4;
AudioPlayMemory sound5;
AudioMixer4 mix1; // two 4-channel mixers are needed in
AudioMixer4 mix2; // tandem to combine 6 audio sources
AudioOutputI2S headphones;
AudioOutputAnalog dac; // play to both I2S audio board and on-chip DAC
// Create Audio connections between the components
//
AudioConnection c1(sound0, 0, mix1, 0);
AudioConnection c2(sound1, 0, mix1, 1);
AudioConnection c3(sound2, 0, mix1, 2);
AudioConnection c4(sound3, 0, mix1, 3);
AudioConnection c5(mix1, 0, mix2, 0); // output of mix1 into 1st input on mix2
AudioConnection c6(sound4, 0, mix2, 1);
AudioConnection c7(sound5, 0, mix2, 2);
AudioConnection c8(mix2, 0, headphones, 0);
AudioConnection c9(mix2, 0, headphones, 1);
AudioConnection c10(mix2, 0, dac, 0);
// Create an object to control the audio shield.
//
AudioControlSGTL5000 audioShield;
// Bounce objects to read six pushbuttons (pins 0-5)
//
Bounce button0 = Bounce(0, 5);
Bounce button1 = Bounce(1, 5); // 5 ms debounce time
Bounce button2 = Bounce(2, 5);
Bounce button3 = Bounce(3, 5);
Bounce button4 = Bounce(4, 5);
Bounce button5 = Bounce(5, 5);
void setup() {
// Configure the pushbutton pins for pullups.
// Each button should connect from the pin to GND.
pinMode(0, INPUT_PULLUP);
pinMode(1, INPUT_PULLUP);
pinMode(2, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(4, INPUT_PULLUP);
pinMode(5, INPUT_PULLUP);
// Audio connections require memory to work. For more
// detailed information, see the MemoryAndCpuUsage example
AudioMemory(10);
// turn on the output
audioShield.enable();
audioShield.volume(1);
// if your 3.3V power has noise, switching to the
// internal 1.2V reference can give you a clean signal
//dac.analogReference(INTERNAL);
// reduce the gain on mixer channels, so more than 1
// sound can play simultaneously without clipping
mix1.gain(0, 0.5);
mix1.gain(1, 0.5);
mix1.gain(2, 0.5);
mix1.gain(3, 0.5);
mix2.gain(1, 0.5);
mix2.gain(2, 0.5);
}
void loop() {
// Update all the button objects
button0.update();
button1.update();
button2.update();
button3.update();
button4.update();
button5.update();
// When the buttons are pressed, just start a sound playing.
// The audio library will play each sound through the mixers
// so any combination can play simultaneously.
//
if (button0.fallingEdge()) {
sound0.play(AudioSampleFf04);
}
if (button1.fallingEdge()) {
sound1.play(AudioSampleFf20);
}
if (button2.fallingEdge()) {
sound2.play(AudioSampleFf33);
}
if (button3.fallingEdge()) {
sound3.play(AudioSampleFf57);
}
if (button4.fallingEdge()) {
sound4.play(AudioSampleFf63);
}
if (button5.fallingEdge()) {
sound5.play(AudioSampleClap);
}
// read the knob position (analog input A2)
//int knob = analogRead(A2);
// float vol = (float)knob / 1280.0;
// sgtl5000_1.volume(vol);
}
Code:
/* Audio Library for Teensy 3.X
* Copyright (c) 2017, Paul Stoffregen, [email]paul@pjrc.com[/email]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "output_tdm.h"
#include "memcpy_audio.h"
#include "utility/imxrt_hw.h"
audio_block_t * AudioOutputTDM::block_input[16] = {
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr
};
bool AudioOutputTDM::update_responsibility = false;
DMAChannel AudioOutputTDM::dma(false);
DMAMEM __attribute__((aligned(32)))
static uint32_t zeros[AUDIO_BLOCK_SAMPLES/2];
DMAMEM __attribute__((aligned(32)))
static uint32_t tdm_tx_buffer[AUDIO_BLOCK_SAMPLES*16];
void AudioOutputTDM::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
for (int i=0; i < 16; i++) {
block_input[i] = nullptr;
}
// TODO: should we set & clear the I2S_TCSR_SR bit here?
config_tdm();
#if defined(KINETISK)
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
dma.TCD->SADDR = tdm_tx_buffer;
dma.TCD->SOFF = 4;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = 4;
dma.TCD->SLAST = -sizeof(tdm_tx_buffer);
dma.TCD->DADDR = &I2S0_TDR0;
dma.TCD->DOFF = 0;
dma.TCD->CITER_ELINKNO = sizeof(tdm_tx_buffer) / 4;
dma.TCD->DLASTSGA = 0;
dma.TCD->BITER_ELINKNO = sizeof(tdm_tx_buffer) / 4;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
update_responsibility = update_setup();
dma.enable();
I2S0_TCSR = I2S_TCSR_SR;
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
CORE_PIN6_CONFIG = 3; //1:TX_DATA0
dma.TCD->SADDR = tdm_tx_buffer;
dma.TCD->SOFF = 4;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = 4;
dma.TCD->SLAST = -sizeof(tdm_tx_buffer);
dma.TCD->DADDR = &I2S1_TDR0;
dma.TCD->DOFF = 0;
dma.TCD->CITER_ELINKNO = sizeof(tdm_tx_buffer) / 4;
dma.TCD->DLASTSGA = 0;
dma.TCD->BITER_ELINKNO = sizeof(tdm_tx_buffer) / 4;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX);
update_responsibility = update_setup();
dma.enable();
I2S1_RCSR |= I2S_RCSR_RE;
I2S1_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
#endif
dma.attachInterrupt(isr);
}
// TODO: needs optimization...
static void memcpy_tdm_tx(uint32_t *dest, const uint32_t *src1, const uint32_t *src2)
{
uint32_t i, in1, in2, out1, out2;
for (i=0; i < AUDIO_BLOCK_SAMPLES/4; i++) {
in1 = *src1++;
in2 = *src2++;
out1 = (in1 << 16) | (in2 & 0xFFFF);
out2 = (in1 & 0xFFFF0000) | (in2 >> 16);
*dest = out1;
*(dest + 8) = out2;
in1 = *src1++;
in2 = *src2++;
out1 = (in1 << 16) | (in2 & 0xFFFF);
out2 = (in1 & 0xFFFF0000) | (in2 >> 16);
*(dest + 16)= out1;
*(dest + 24) = out2;
dest += 32;
}
}
void AudioOutputTDM::isr(void)
{
uint32_t *dest, *dc;
const uint32_t *src1, *src2;
uint32_t i, saddr;
saddr = (uint32_t)(dma.TCD->SADDR);
dma.clearInterrupt();
if (saddr < (uint32_t)tdm_tx_buffer + sizeof(tdm_tx_buffer) / 2) {
// DMA is transmitting the first half of the buffer
// so we must fill the second half
dest = tdm_tx_buffer + AUDIO_BLOCK_SAMPLES*8;
} else {
// DMA is transmitting the second half of the buffer
// so we must fill the first half
dest = tdm_tx_buffer;
}
if (update_responsibility) AudioStream::update_all();
dc = dest;
for (i=0; i < 16; i += 2) {
src1 = block_input[i] ? (uint32_t *)(block_input[i]->data) : zeros;
src2 = block_input[i+1] ? (uint32_t *)(block_input[i+1]->data) : zeros;
memcpy_tdm_tx(dest, src1, src2);
dest++;
}
#if IMXRT_CACHE_ENABLED >= 2
arm_dcache_flush_delete(dc, sizeof(tdm_tx_buffer) / 2 );
#endif
for (i=0; i < 16; i++) {
if (block_input[i]) {
release(block_input[i]);
block_input[i] = nullptr;
}
}
}
void AudioOutputTDM::update(void)
{
audio_block_t *prev[16];
unsigned int i;
__disable_irq();
for (i=0; i < 16; i++) {
prev[i] = block_input[i];
block_input[i] = receiveReadOnly(i);
}
__enable_irq();
for (i=0; i < 16; i++) {
if (prev[i]) release(prev[i]);
}
}
#if defined(KINETISK)
// MCLK needs to be 48e6 / 1088 * 512 = 22.588235 MHz -> 44.117647 kHz sample rate
//
#if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
// PLL is at 96 MHz in these modes
#define MCLK_MULT 4
#define MCLK_DIV 17
#elif F_CPU == 72000000
#define MCLK_MULT 16
#define MCLK_DIV 51
#elif F_CPU == 120000000
#define MCLK_MULT 16
#define MCLK_DIV 85
#elif F_CPU == 144000000
#define MCLK_MULT 8
#define MCLK_DIV 51
#elif F_CPU == 168000000
#define MCLK_MULT 16
#define MCLK_DIV 119
#elif F_CPU == 180000000
#define MCLK_MULT 32
#define MCLK_DIV 255
#define MCLK_SRC 0
#elif F_CPU == 192000000
#define MCLK_MULT 2
#define MCLK_DIV 17
#elif F_CPU == 216000000
#define MCLK_MULT 16
#define MCLK_DIV 153
#define MCLK_SRC 0
#elif F_CPU == 240000000
#define MCLK_MULT 8
#define MCLK_DIV 85
#else
#error "This CPU Clock Speed is not supported by the Audio library";
#endif
#ifndef MCLK_SRC
#if F_CPU >= 20000000
#define MCLK_SRC 3 // the PLL
#else
#define MCLK_SRC 0 // system clock
#endif
#endif
#endif
void AudioOutputTDM::config_tdm(void)
{
#if defined(KINETISK)
SIM_SCGC6 |= SIM_SCGC6_I2S;
SIM_SCGC7 |= SIM_SCGC7_DMA;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
// if either transmitter or receiver is enabled, do nothing
if (I2S0_TCSR & I2S_TCSR_TE) return;
if (I2S0_RCSR & I2S_RCSR_RE) return;
// enable MCLK output
I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE;
while (I2S0_MCR & I2S_MCR_DUF) ;
I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1));
// configure transmitter
I2S0_TMR = 0;
I2S0_TCR1 = I2S_TCR1_TFW(4);
I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1)
| I2S_TCR2_BCD | I2S_TCR2_DIV(0);
I2S0_TCR3 = I2S_TCR3_TCE;
I2S0_TCR4 = I2S_TCR4_FRSZ(7) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF
| I2S_TCR4_FSE | I2S_TCR4_FSD;
I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
// configure receiver (sync'd to transmitter clocks)
I2S0_RMR = 0;
I2S0_RCR1 = I2S_RCR1_RFW(4);
I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1)
| I2S_RCR2_BCD | I2S_RCR2_DIV(0);
I2S0_RCR3 = I2S_RCR3_RCE;
I2S0_RCR4 = I2S_RCR4_FRSZ(7) | I2S_RCR4_SYWD(0) | I2S_RCR4_MF
| I2S_RCR4_FSE | I2S_RCR4_FSD;
I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31);
// configure pin mux for 3 clock signals
CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) - 44.1kHz
CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK - 11.2 MHz
CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK - 22.5 MHz
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON);
//PLL:
int fs = AUDIO_SAMPLE_RATE_EXACT;
// PLL between 27*24 = 648MHz und 54*24=1296MHz
int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4
int n2 = 1 + (24000000 * 27) / (fs * 256 * n1);
double C = ((double)fs * 256 * n1 * n2) / 24000000;
int c0 = C;
int c2 = 10000;
int c1 = C * c2 - (c0 * c2);
set_audioClock(c0, c1, c2);
// clear SAI1_CLK register locations
CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK))
| CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4
n1 = n1 / 2; //Double Speed for TDM
CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK))
| CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07
| CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f
IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK))
| (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); //Select MCLK
// if either transmitter or receiver is enabled, do nothing
if (I2S1_TCSR & I2S_TCSR_TE) return;
if (I2S1_RCSR & I2S_RCSR_RE) return;
// configure transmitter
int rsync = 0;
int tsync = 1;
I2S1_TMR = 0;
I2S1_TCR1 = I2S_TCR1_RFW(4);
I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1)
| I2S_TCR2_BCD | I2S_TCR2_DIV(0);
I2S1_TCR3 = I2S_TCR3_TCE;
I2S1_TCR4 = I2S_TCR4_FRSZ(7) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF
| I2S_TCR4_FSE | I2S_TCR4_FSD;
I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
I2S1_RMR = 0;
I2S1_RCR1 = I2S_RCR1_RFW(4);
I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1)
| I2S_RCR2_BCD | I2S_RCR2_DIV(0);
I2S1_RCR3 = I2S_RCR3_RCE;
I2S1_RCR4 = I2S_RCR4_FRSZ(7) | I2S_RCR4_SYWD(0) | I2S_RCR4_MF
| I2S_RCR4_FSE | I2S_RCR4_FSD;
I2S1_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31);
CORE_PIN23_CONFIG = 3; //1:MCLK
CORE_PIN21_CONFIG = 3; //1:RX_BCLK
CORE_PIN20_CONFIG = 3; //1:RX_SYNC
#endif
}
Last edited by a moderator: