Teensy 4.1 / OctoWS2811 adapter + VideoDisplay_Teensy4

I'm trying to use LED strips with the OctoWS2811 adapter, a Teensy 4.1, and 16 LED strips (each with 30 LEDs) to display a video file streamed from a PC
Can we use the OctoWS2811 adapter with the VideoDisplay_Teensy4 sketch?Has anyone on this forum already tried it?

I'm trying to do it, but I'm not getting good results on my LEDstrip.
I'am trying the basic test, all is good but when I try video display the image is wrong.
 
Code:
Here is my code VideoDisplay



</>

/* OctoWS2811 VideoDisplay.ino - Video on LEDs, from a PC, Mac, Raspberry Pi

[URL unfurl="true"]http://www.pjrc.com/teensy/td_libs_OctoWS2811.html[/URL]

Copyright (c) 2020 Paul Stoffregen, PJRC.COM, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Update: The movie2serial program which transmit data has moved to "extras"

github.com

OctoWS2811/extras at master · PaulStoffregen/OctoWS2811

Control thousands of WS2811/2812 LEDs at video refresh speeds - PaulStoffregen/OctoWS2811

github.com



Required Connections

--------------------

pin 2: LED Strip #1 OctoWS2811 drives 8 LED Strips.

pin 14: LED strip #2 All 8 are the same length.

pin 7: LED strip #3

pin 8: LED strip #4 A 100 to 220 ohm resistor should used

pin 6: LED strip #5 between each Teensy pin and the

pin 20: LED strip #6 wire to the LED strip, to minimize

pin 21: LED strip #7 high frequency ringining & noise.

pin 5: LED strip #8

pin 15 & 16 - Connect together, but do not use

pin 4: Do not use

pin 3: Do not use as PWM. Normal use is ok.

pin 12: Frame Sync

When using more than 1 Teensy to display a video image, connect

the Frame Sync signal between every board. All boards will

synchronize their WS2811 update using this signal.

Beware of image distortion from long LED strip lengths. During

the WS2811 update, the LEDs update in sequence, not all at the

same instant! The first pixel updates after 30 microseconds,

the second pixel after 60 us, and so on. A strip of 120 LEDs

updates in 3.6 ms, which is 10.8% of a 30 Hz video frame time.

Doubling the strip length to 240 LEDs increases the lag to 21.6%

of a video frame. For best results, use shorter length strips.

Multiple boards linked by the frame sync signal provides superior

video timing accuracy.

A Multi-TT USB hub should be used if 2 or more Teensy boards

are connected. The Multi-TT feature allows proper USB bandwidth

allocation. Single-TT hubs, or direct connection to multiple

ports on the same motherboard, may give poor performance.

*/

#include <OctoWS2811.h>

// The actual arrangement of the LEDs connected to this Teensy 3.0 board.

// LED_HEIGHT *must* be a multiple of 8. When 16, 24, 32 are used, each

// strip spans 2, 3, 4 rows. LED_LAYOUT indicates the direction the strips

// are arranged. If 0, each strip begins on the left for its first row,

// then goes right to left for its second row, then left to right,

// zig-zagging for each successive row.

#define LED_WIDTH 30 // number of LEDs horizontally

#define LED_HEIGHT 16 // number of LEDs vertically (must be multiple of 8)

#define LED_LAYOUT 0 // 0 = even rows left->right, 1 = even rows right->left

// The portion of the video image to show on this set of LEDs. All 4 numbers

// are percentages, from 0 to 100. For a large LED installation with many

// Teensy 3.0 boards driving groups of LEDs, these parameters allow you to

// program each Teensy to tell the video application which portion of the

// video it displays. By reading these numbers, the video application can

// automatically configure itself, regardless of which serial port COM number

// or device names are assigned to each Teensy 3.0 by your operating system.

#define VIDEO_XOFFSET 0

#define VIDEO_YOFFSET 0 // 0 display entire image

#define VIDEO_WIDTH 100

#define VIDEO_HEIGHT 100

//#define VIDEO_XOFFSET 0

//#define VIDEO_YOFFSET 0 // display upper half

//#define VIDEO_WIDTH 100

//#define VIDEO_HEIGHT 50

//#define VIDEO_XOFFSET 0

//#define VIDEO_YOFFSET 50 // display lower half

//#define VIDEO_WIDTH 100

//#define VIDEO_HEIGHT 50



const int ledsPerStrip = LED_WIDTH * LED_HEIGHT / 8;

DMAMEM int displayMemory[ledsPerStrip * 6];

int drawingMemory[ledsPerStrip * 6];

int incomingMemory[ledsPerStrip * 6];

elapsedMicros elapsedUsecSinceLastFrameSync = 0;

const int config = WS2811_800kHz; // color config is on the PC side

OctoWS2811 leds(ledsPerStrip, displayMemory, drawingMemory, config);

void setup() {

    pinMode(12, INPUT_PULLUP); // Frame Sync

    Serial.setTimeout(50);

    leds.begin();

    leds.show();

}

void loop() {

    //

    // wait for a Start-Of-Message character:

    //

    // '*' = Frame of image data, with frame sync pulse to be sent

    // a specified number of microseconds after reception of

    // the first byte (typically at 75% of the frame time, to

    // allow other boards to fully receive their data).

    // Normally '*' is used when the sender controls the pace

    // of playback by transmitting each frame as it should

    // appear.

    //

    // '$' = Frame of image data, with frame sync pulse to be sent

    // a specified number of microseconds after the previous

    // frame sync. Normally this is used when the sender

    // transmits each frame as quickly as possible, and we

    // control the pacing of video playback by updating the

    // LEDs based on time elapsed from the previous frame.

    //

    // '%' = Frame of image data, to be displayed with a frame sync

    // pulse is received from another board. In a multi-board

    // system, the sender would normally transmit one '*' or '$'

    // message and '%' messages to all other boards, so every

    // Teensy 3.0 updates at the exact same moment.

    //

    // '@' = Reset the elapsed time, used for '$' messages. This

    // should be sent before the first '$' message, so many

    // frames are not played quickly if time as elapsed since

    // startup or prior video playing.

    //

    // '?' = Query LED and Video parameters. Teensy 3.0 responds

    // with a comma delimited list of information.

    //

    int startChar = Serial.read();

    if (startChar == '*') {

        // receive a "master" frame - we send the frame sync to other boards

        // the sender is controlling the video pace. The 16 bit number is

        // how far into this frame to send the sync to other boards.

        unsigned int startAt = micros();

        unsigned int usecUntilFrameSync = 0;

        int count = Serial.readBytes((char*)&usecUntilFrameSync, 2);

        if (count != 2) return;

        count = Serial.readBytes((char*)incomingMemory, sizeof(incomingMemory));

        if (count == sizeof(incomingMemory)) {

            copyIncomingToDrawing();

            unsigned int endAt = micros();

            unsigned int usToWaitBeforeSyncOutput = 100;

            if (endAt - startAt < usecUntilFrameSync) {

                usToWaitBeforeSyncOutput = usecUntilFrameSync - (endAt - startAt);

            }

            digitalWrite(12, HIGH);

            pinMode(12, OUTPUT);

            delayMicroseconds(usToWaitBeforeSyncOutput);

            digitalWrite(12, LOW);

            // WS2811 update begins immediately after falling edge of frame sync

            digitalWrite(13, HIGH);

            leds.show();

            digitalWrite(13, LOW);

        }

    }

    else if (startChar == '$') {

        // receive a "master" frame - we send the frame sync to other boards

        // we are controlling the video pace. The 16 bit number is how long

        // after the prior frame sync to wait until showing this frame

        unsigned int usecUntilFrameSync = 0;

        int count = Serial.readBytes((char*)&usecUntilFrameSync, 2);

        if (count != 2) return;

        count = Serial.readBytes((char*)incomingMemory, sizeof(incomingMemory));

        if (count == sizeof(incomingMemory)) {

            copyIncomingToDrawing();

            digitalWrite(12, HIGH);

            pinMode(12, OUTPUT);

            while (elapsedUsecSinceLastFrameSync < usecUntilFrameSync) /* wait */;

            elapsedUsecSinceLastFrameSync -= usecUntilFrameSync;

            digitalWrite(12, LOW);

            // WS2811 update begins immediately after falling edge of frame sync

            digitalWrite(13, HIGH);

            leds.show();

            digitalWrite(13, LOW);

        }

    }

    else if (startChar == '%') {

        // receive a "slave" frame - wait to show it until the frame sync arrives

        pinMode(12, INPUT_PULLUP);

        unsigned int unusedField = 0;

        int count = Serial.readBytes((char*)&unusedField, 2);

        if (count != 2) return;

        count = Serial.readBytes((char*)incomingMemory, sizeof(incomingMemory));

        if (count == sizeof(incomingMemory)) {

            copyIncomingToDrawing();

            elapsedMillis wait = 0;

            while (digitalRead(12) != HIGH && wait < 30); // wait for sync high

            while (digitalRead(12) != LOW && wait < 30); // wait for sync high->low

            // WS2811 update begins immediately after falling edge of frame sync

            if (wait < 30) {

                digitalWrite(13, HIGH);

                leds.show();

                digitalWrite(13, LOW);

            }

        }

    }

    else if (startChar == '@') {

        // reset the elapsed frame time, for startup of '$' message playing

        elapsedUsecSinceLastFrameSync = 0;

    }

    else if (startChar == '?') {

        // when the video application asks, give it all our info

        // for easy and automatic configuration

        Serial.print(LED_WIDTH);

        Serial.write(',');

        Serial.print(LED_HEIGHT);

        Serial.write(',');

        Serial.print(LED_LAYOUT);

        Serial.write(',');

        Serial.print(0);

        Serial.write(',');

        Serial.print(0);

        Serial.write(',');

        Serial.print(VIDEO_XOFFSET);

        Serial.write(',');

        Serial.print(VIDEO_YOFFSET);

        Serial.write(',');

        Serial.print(VIDEO_WIDTH);

        Serial.write(',');

        Serial.print(VIDEO_HEIGHT);

        Serial.write(',');

        Serial.print(0);

        Serial.write(',');

        Serial.print(0);

        Serial.write(',');

        Serial.print(0);

        Serial.println();

    }

    else if (startChar >= 0) {

        // discard unknown characters

    }

}



// The PC transmits data in the transposed format Teensy 3.x uses.

// This copy function undoes the transpose, so the pixels are

// put back into the simpler framebuffer format Teensy 4.x uses.

void copyIncomingToDrawing() {

    const uint32_t width = (LED_WIDTH * LED_HEIGHT / 8) * 3;

    const uint8_t* src = (const uint8_t*)incomingMemory;

    uint8_t* dest = (uint8_t*)drawingMemory;

    for (uint32_t x = 0; x < width; x++) {

        uint8_t b[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

        for (uint8_t mask = 0x80; mask; mask >>= 1) {

            uint8_t bits = *src++;

            if (bits & 0x01) b[0] |= mask;

            if (bits & 0x02) b[1] |= mask;

            if (bits & 0x04) b[2] |= mask;

            if (bits & 0x08) b[3] |= mask;

            if (bits & 0x10) b[4] |= mask;

            if (bits & 0x20) b[5] |= mask;

            if (bits & 0x40) b[6] |= mask;

            if (bits & 0x80) b[7] |= mask;

        }

        dest[width * 0] = b[0];

        dest[width * 1] = b[1];

        dest[width * 2] = b[2];

        dest[width * 3] = b[3];

        dest[width * 4] = b[4];

        dest[width * 5] = b[5];

        dest[width * 6] = b[6];

        dest[width * 7] = b[7];

        dest = dest + 1;

    }

}
 
Code for processing
Code:
/* OctoWS2811 movie2serial.pde - Transmit video data to 1 or more

Teensy 3.0 boards running OctoWS2811 VideoDisplay.ino

[URL unfurl="true"]http://www.pjrc.com/teensy/td_libs_OctoWS2811.html[/URL]

Copyright (c) 2018 Paul Stoffregen, PJRC.COM, LLC



Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:



The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

*/



// Linux systems (including Raspberry Pi) require 49-teensy.rules in

// /etc/udev/rules.d/, and gstreamer compatible with Processing's

// video library.



// To configure this program, edit the following sections:

//

// 1: change myMovie to open a video file of your choice ;-)

//

// 2: edit the serialConfigure() lines in setup() for your

// serial device names (Mac, Linux) or COM ports (Windows)

//

// 3: if your LED strips have unusual color configuration,

// edit colorWiring(). Nearly all strips have GRB wiring,

// so normally you can leave this as-is.

//

// 4: if playing 50 or 60 Hz progressive video (or faster),

// edit framerate in movieEvent().



import processing.video.*;

import processing.serial.*;

import java.awt.Rectangle;



Movie myMovie;



float gamma = 1.7;



int numPorts = 0; // the number of serial ports in use

int maxPorts = 24; // maximum number of serial ports



Serial[] ledSerial = new Serial[maxPorts]; // each port's actual Serial port

Rectangle[] ledArea = new Rectangle[maxPorts]; // the area of the movie each port gets, in % (0-100)

boolean[] ledLayout = new boolean[maxPorts]; // layout of rows, true = even is left->right

PImage[] ledImage = new PImage[maxPorts]; // image sent to each port

int[] gammatable = new int[256];

int errorCount = 0;

float framerate = 0;



void settings() {

    size(1920, 1080); // create the window

}



void setup() {

    String[] list = Serial.list();

    delay(20);

    println("Serial Ports List:");

    println(list);

    serialConfigure("COM19"); // change these to your port names

    //serialConfigure("/dev/ttyACM1");

    if (errorCount > 0) exit();

    for (int i = 0; i < 256; i++) {

        gammatable = (int)(pow((float)i / 255.0, gamma) * 255.0 + 0.5);

    }

    myMovie = new Movie(this, "/tmp/Toy_Story.avi");

    myMovie.loop(); // start the movie :)

}





// movieEvent runs for each new frame of movie data

void movieEvent(Movie m) {

    println("movieEvent");

    // read the movie's next frame

    m.read();



    //if (framerate == 0) framerate = m.getSourceFrameRate();

    framerate = 30.0; // TODO, how to read the frame rate???



    for (int i = 0; i < numPorts; i++) {

        // copy a portion of the movie's image to the LED image

        int xoffset = percentage(m.width, ledArea.x);

        int yoffset = percentage(m.height, ledArea.y);

        int xwidth = percentage(m.width, ledArea.width);

        int yheight = percentage(m.height, ledArea.height);

        ledImage.copy(m, xoffset, yoffset, xwidth, yheight,

            0, 0, ledImage.width, ledImage.height);

        // convert the LED image to raw data

        byte[] ledData = new byte[(ledImage.width * ledImage.height * 3) + 3];

        image2data(ledImage, ledData, ledLayout);

        if (i == 0) {

            ledData[0] = '*'; // first Teensy is the frame sync master

            int usec = (int)((1000000.0 / framerate) * 0.75);

            ledData[1] = (byte)(usec); // request the frame sync pulse

            ledData[2] = (byte)(usec >> 8); // at 75% of the frame time

        }

        else {

            ledData[0] = '%'; // others sync to the master board

            ledData[1] = 0;

            ledData[2] = 0;

        }

        // send the raw data to the LEDs :)

        ledSerial.write(ledData);

    }

}



// image2data converts an image to OctoWS2811's raw data format.

// The number of vertical pixels in the image must be a multiple

// of 8. The data array must be the proper size for the image.

void image2data(PImage image, byte[] data, boolean layout) {

    int offset = 3;

    int x, y, xbegin, xend, xinc, mask;

    int linesPerPin = image.height / 8;

    int pixel[] = new int[8];



    for (y = 0; y < linesPerPin; y++) {

        if ((y & 1) == (layout ? 0 : 1)) {

            // even numbered rows are left to right

            xbegin = 0;

            xend = image.width;

            xinc = 1;

        }

        else {

            // odd numbered rows are right to left

            xbegin = image.width - 1;

            xend = -1;

            xinc = -1;

        }

        for (x = xbegin; x != xend; x += xinc) {

            for (int i = 0; i < 8; i++) {

                // fetch 8 pixels from the image, 1 for each pin

                pixel = image.pixels[x + (y + linesPerPin * i) * image.width];

                pixel = colorWiring(pixel);

            }

            // convert 8 pixels to 24 bytes

            for (mask = 0x800000; mask != 0; mask >>= 1) {

                byte b = 0;

                for (int i = 0; i < 8; i++) {

                    if ((pixel & mask) != 0) b |= (1 << i);

                }

                data[offset++] = b;

            }

        }

    }

}



// translate the 24 bit color from RGB to the actual

// order used by the LED wiring. GRB is the most common.

int colorWiring(int c) {

    int red = (c & 0xFF0000) >> 16;

    int green = (c & 0x00FF00) >> 8;

    int blue = (c & 0x0000FF);

    red = gammatable[red];

    green = gammatable[green];

    blue = gammatable[blue];

    return (green << 16) | (red << 8) | (blue); // GRB - most common wiring

}



// ask a Teensy board for its LED configuration, and set up the info for it.

void serialConfigure(String portName) {

    if (numPorts >= maxPorts) {

        println("too many serial ports, please increase maxPorts");

        errorCount++;

        return;

    }

    try {

        ledSerial[numPorts] = new Serial(this, portName);

        if (ledSerial[numPorts] == null) throw new NullPointerException();

        ledSerial[numPorts].write('?');

    }

    catch (Throwable e) {

        println("Serial port " + portName + " does not exist or is non-functional");

        errorCount++;

        return;

    }

    delay(50);

    String line = ledSerial[numPorts].readStringUntil(10);

    if (line == null) {

        println("Serial port " + portName + " is not responding.");

        println("Is it really a Teensy 3.0 running VideoDisplay?");

        errorCount++;

        return;

    }

    String param[] = line.split(",");

    if (param.length != 12) {

        println("Error: port " + portName + " did not respond to LED config query");

        errorCount++;

        return;

    }

    // only store the info and increase numPorts if Teensy responds properly

    ledImage[numPorts] = new PImage(Integer.parseInt(param[0]), Integer.parseInt(param[1]), RGB);

    ledArea[numPorts] = new Rectangle(Integer.parseInt(param[5]), Integer.parseInt(param[6]),

        Integer.parseInt(param[7]), Integer.parseInt(param[8]));

    ledLayout[numPorts] = (Integer.parseInt(param[5]) == 0);

    numPorts++;

}



// draw runs every time the screen is redrawn - show the movie...

void draw() {

    //println("draw");

    // show the original video

    image(myMovie, 0, 80);



    // then try to show what was most recently sent to the LEDs

    // by displaying all the images for each port.

    for (int i = 0; i < numPorts; i++) {

        // compute the intended size of the entire LED array

        int xsize = percentageInverse(ledImage.width, ledArea.width);

        int ysize = percentageInverse(ledImage.height, ledArea.height);

        // computer this image's position within it

        int xloc = percentage(xsize, ledArea.x);

        int yloc = percentage(ysize, ledArea.y);

        // show what should appear on the LEDs

        image(ledImage, 240 - xsize / 2 + xloc, 10 + yloc);

    }

}



// respond to mouse clicks as pause/play

boolean isPlaying = true;

void mousePressed() {

    if (isPlaying) {

        myMovie.pause();

        isPlaying = false;

    }

    else {

        myMovie.play();

        isPlaying = true;

    }

}



// scale a number by a percentage, from 0 to 100

int percentage(int num, int percent) {

    double mult = percentageFloat(percent);

    double output = num * mult;

    return (int)output;

}



// scale a number by the inverse of a percentage, from 0 to 100

int percentageInverse(int num, int percent) {

    double div = percentageFloat(percent);

    double output = num / div;

    return (int)output;

}



// convert an integer from 0 to 100 to a float percentage

// from 0.0 to 1.0. Special cases for 1/3, 1/6, 1/7, etc

// are handled automatically to fix integer rounding.

double percentageFloat(int percent) {

    if (percent == 33) return 1.0 / 3.0;

    if (percent == 17) return 1.0 / 6.0;

    if (percent == 14) return 1.0 / 7.0;

    if (percent == 13) return 1.0 / 8.0;

    if (percent == 11) return 1.0 / 9.0;

    if (percent == 9) return 1.0 / 11.0;

    if (percent == 8) return 1.0 / 12.0;

    return (double)percent / 100.0;

}
 
Back
Top