// A clone of the
#include <stdint.h>
#include "imxrt.h"
#include "wiring.h"
#include "debug/printf.h"
// A brief explanation of F_CPU_ACTUAL vs F_CPU
// https://forum.pjrc.com/threads/57236?p=212642&viewfull=1#post212642
//volatile uint32_t F_CPU_ACTUAL = 396000000; already defined in startup code
//volatile uint32_t F_BUS_ACTUAL = 132000000;
// Define these to increase the voltage when attempting overclocking
// The frequency step is how quickly to increase voltage per frequency
// The datasheet says 1600 is the absolute maximum voltage. The hardware
// can actually create up to 1575. But 1300 is the recommended limit.
// (earlier versions of the datasheet said 1300 was the absolute max)
#define OVERCLOCK_STEPSIZE 28000000
#define OVERCLOCK_MAX_VOLT 1575
// stuff needing wait handshake:
// CCM_CACRR ARM_PODF
// CCM_CBCDR PERIPH_CLK_SEL
// CCM_CBCMR PERIPH2_CLK_SEL
// CCM_CBCDR AHB_PODF
// CCM_CBCDR SEMC_PODF
uint32_t Xset_arm_clock(uint32_t frequency)
{
uint32_t cbcdr = CCM_CBCDR; // pg 1021
uint32_t cbcmr = CCM_CBCMR; // pg 1023
uint32_t dcdc = DCDC_REG3;
// compute required voltage
uint32_t voltage = 1150; // default = 1.15V
if (frequency > 528000000) {
voltage = 1250; // 1.25V
#if defined(OVERCLOCK_STEPSIZE) && defined(OVERCLOCK_MAX_VOLT)
if (frequency > 600000000) {
voltage += ((frequency - 600000000) / OVERCLOCK_STEPSIZE) * 25;
if (voltage > OVERCLOCK_MAX_VOLT) voltage = OVERCLOCK_MAX_VOLT;
}
#endif
} else if (frequency <= 24000000) {
voltage = 950; // 0.95
}
// if voltage needs to increase, do it before switch clock speed
CCM_CCGR6 |= CCM_CCGR6_DCDC(CCM_CCGR_ON);
if ((dcdc & DCDC_REG3_TRG_MASK) < DCDC_REG3_TRG((voltage - 800) / 25)) {
printf("Increasing voltage to %u mV\n", voltage);
dcdc &= ~DCDC_REG3_TRG_MASK;
dcdc |= DCDC_REG3_TRG((voltage - 800) / 25);
DCDC_REG3 = dcdc;
while (!(DCDC_REG0 & DCDC_REG0_STS_DC_OK)) ; // wait voltage settling
}
if (!(cbcdr & CCM_CBCDR_PERIPH_CLK_SEL)) {
printf("need to switch to alternate clock during reconfigure of ARM PLL\n");
const uint32_t need1s = CCM_ANALOG_PLL_USB1_ENABLE | CCM_ANALOG_PLL_USB1_POWER |
CCM_ANALOG_PLL_USB1_LOCK | CCM_ANALOG_PLL_USB1_EN_USB_CLKS;
uint32_t sel, div;
if ((CCM_ANALOG_PLL_USB1 & need1s) == need1s) {
printf("USB PLL is running, so we can use 120 MHz\n");
sel = 0;
div = 3; // divide down to 120 MHz, so IPG is ok even if IPG_PODF=0
} else {
printf("USB PLL is off, use 24 MHz crystal\n");
sel = 1;
div = 0;
}
if ((cbcdr & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) != CCM_CBCDR_PERIPH_CLK2_PODF(div)) {
// PERIPH_CLK2 divider needs to be changed
cbcdr &= ~CCM_CBCDR_PERIPH_CLK2_PODF_MASK;
cbcdr |= CCM_CBCDR_PERIPH_CLK2_PODF(div);
CCM_CBCDR = cbcdr;
}
if ((cbcmr & CCM_CBCMR_PERIPH_CLK2_SEL_MASK) != CCM_CBCMR_PERIPH_CLK2_SEL(sel)) {
// PERIPH_CLK2 source select needs to be changed
cbcmr &= ~CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
cbcmr |= CCM_CBCMR_PERIPH_CLK2_SEL(sel);
CCM_CBCMR = cbcmr;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH2_CLK_SEL_BUSY) ; // wait
}
// switch over to PERIPH_CLK2
cbcdr |= CCM_CBCDR_PERIPH_CLK_SEL;
CCM_CBCDR = cbcdr;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH_CLK_SEL_BUSY) ; // wait
} else {
printf("already running from PERIPH_CLK2, safe to mess with ARM PLL\n");
}
// TODO: check if PLL2 running, can 352, 396 or 528 can work? (no need for ARM PLL)
// DIV_SELECT: 54-108 = official range 648 to 1296 in 12 MHz steps
uint32_t div_arm = 1;
uint32_t div_ahb = 1;
while (frequency * div_arm * div_ahb < 648000000) {
if (div_arm < 8) {
div_arm = div_arm + 1;
} else {
if (div_ahb < 5) {
div_ahb = div_ahb + 1;
div_arm = 1;
} else {
break;
}
}
}
uint32_t mult = (frequency * div_arm * div_ahb + 6000000) / 12000000;
if (mult > 108) mult = 108;
if (mult < 54) mult = 54;
printf("Freq: 12 MHz * %u / %u / %u\n", mult, div_arm, div_ahb);
frequency = mult * 12000000 / div_arm / div_ahb;
printf("ARM PLL=%x\n", CCM_ANALOG_PLL_ARM);
const uint32_t arm_pll_mask = CCM_ANALOG_PLL_ARM_LOCK | CCM_ANALOG_PLL_ARM_BYPASS |
CCM_ANALOG_PLL_ARM_ENABLE | CCM_ANALOG_PLL_ARM_POWERDOWN |
CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK;
if ((CCM_ANALOG_PLL_ARM & arm_pll_mask) != (CCM_ANALOG_PLL_ARM_LOCK
| CCM_ANALOG_PLL_ARM_ENABLE | CCM_ANALOG_PLL_ARM_DIV_SELECT(mult))) {
printf("ARM PLL needs reconfigure\n");
CCM_ANALOG_PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN;
// TODO: delay needed?
CCM_ANALOG_PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE
| CCM_ANALOG_PLL_ARM_DIV_SELECT(mult);
while (!(CCM_ANALOG_PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK)) ; // wait for lock
printf("ARM PLL=%x\n", CCM_ANALOG_PLL_ARM);
} else {
printf("ARM PLL already running at required frequency\n");
}
if ((CCM_CACRR & CCM_CACRR_ARM_PODF_MASK) != (div_arm - 1)) {
CCM_CACRR = CCM_CACRR_ARM_PODF(div_arm - 1);
while (CCM_CDHIPR & CCM_CDHIPR_ARM_PODF_BUSY) ; // wait
}
if ((cbcdr & CCM_CBCDR_AHB_PODF_MASK) != CCM_CBCDR_AHB_PODF(div_ahb - 1)) {
cbcdr &= ~CCM_CBCDR_AHB_PODF_MASK;
cbcdr |= CCM_CBCDR_AHB_PODF(div_ahb - 1);
CCM_CBCDR = cbcdr;
while (CCM_CDHIPR & CCM_CDHIPR_AHB_PODF_BUSY); // wait
}
uint32_t div_ipg = (frequency + 149999999) / 150000000;
if (div_ipg > 4) div_ipg = 4;
if ((cbcdr & CCM_CBCDR_IPG_PODF_MASK) != (CCM_CBCDR_IPG_PODF(div_ipg - 1))) {
cbcdr &= ~CCM_CBCDR_IPG_PODF_MASK;
cbcdr |= CCM_CBCDR_IPG_PODF(div_ipg - 1);
// TODO: how to safely change IPG_PODF ??
CCM_CBCDR = cbcdr;
}
//cbcdr &= ~CCM_CBCDR_PERIPH_CLK_SEL;
//CCM_CBCDR = cbcdr; // why does this not work at 24 MHz?
CCM_CBCDR &= ~CCM_CBCDR_PERIPH_CLK_SEL;
while (CCM_CDHIPR & CCM_CDHIPR_PERIPH_CLK_SEL_BUSY) ; // wait
F_CPU_ACTUAL = frequency;
F_BUS_ACTUAL = frequency / div_ipg;
scale_cpu_cycles_to_microseconds = 0xFFFFFFFFu / (uint32_t)(frequency / 1000000u);
printf("New Frequency: ARM=%u, IPG=%u\n", frequency, frequency / div_ipg);
// if voltage needs to decrease, do it after switch clock speed
if ((dcdc & DCDC_REG3_TRG_MASK) > DCDC_REG3_TRG((voltage - 800) / 25)) {
printf("Decreasing voltage to %u mV\n", voltage);
dcdc &= ~DCDC_REG3_TRG_MASK;
dcdc |= DCDC_REG3_TRG((voltage - 800) / 25);
DCDC_REG3 = dcdc;
while (!(DCDC_REG0 & DCDC_REG0_STS_DC_OK)) ; // wait voltage settling
}
return frequency;
}